

NOAA Technical Memorandum NMFS-NE-171

Length-Weight Relationships for 74 Fish Species Collected during NEFSC Research Vessel Bottom Trawl Surveys, 1992-99

U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Science Center Woods Hole, Massachusetts

March 2003

Recent Issues in This Series:

155. Food of Northwest Atlantic Fishes and Two Common Species of Squid. By Ray E. Bowman, Charles E. Stillwell, William L. Michaels, and Marvin D. Grosslein. January 2000. xiv+138 p., 1 fig., 7 tables, 2 app. NTIS Access. No. PB2000-106735.

156. **Proceedings of the Summer Flounder Aging Workshop**, **1-2 February 1999**, **Woods Hole**, **Massachusetts.** By George R. Bolz, James Patrick Monaghan, Jr., Kathy L. Lang, Randall W. Gregory, and Jay M. Burnett. May 2000. v+15 p., 5 figs., 5 tables. NTIS Access. No. PB2000-107403.

157. **Contaminant Levels in Muscle of Four Species of Recreational Fish from the New York Bight Apex.** By Ashok D. Deshpande, Andrew F.J. Draxler, Vincent S. Zdanowicz, Mary E. Schrock, Anthony J. Paulson, Thomas W. Finneran, Beth L. Sharack, Kathy Corbo, Linda Arlen, Elizabeth A. Leimburg, Bruce W. Dockum, Robert A. Pikanowski, Brian May, and Lisa B. Rosman. June 2000. xxii+99 p., 6 figs., 80 tables, 3 app., glossary. NTIS Access. No. PB2001-107346.

158. **A Framework for Monitoring and Assessing Socioeconomics and Governance of Large Marine Ecosystems.** By Jon G. Sutinen, editor, with contributors (listed alphabetically) Patricia Clay, Christopher L. Dyer, Steven F. Edwards, John Gates, Tom A. Grigalunas, Timothy Hennessey, Lawrence Juda, Andrew W. Kitts, Philip N. Logan, John J. Poggie, Jr., Barbara Pollard Rountree, Scott R. Steinback, Eric M. Thunberg, Harold F. Upton, and John B. Walden. August 2000. v + 32 p., 4 figs., 1 table, glossary. NTIS Access. No. PB2001-106847.

159. An Overview and History of the Food Web Dynamics Program of the Northeast Fisheries Science Center, Woods Hole, Massachusetts. By Jason S. Link and Frank P. Almeida. October 2000. iv + 60 p., 20 figs., 18 tables, 1 app. NTIS Access. No. PB2001-103996.

160. Measuring Technical Efficiency and Capacity in Fisheries by Data Envelopment Analysis Using the General Algebraic Modeling System (GAMS): A Workbook. By John B. Walden and James E. Kirkley. October 2000. iii+15 p., 9 figs., 5 tables. NTIS Access. No. PB2001-106502.

161. **Demersal Fish and American Lobster Diets in the Lower Hudson - Raritan Estuary.** By Frank W. Steimle, Robert A. Pikanowski, Donald G. McMillan, Christine A. Zetlin, and Stuart J. Wilk. November 2000. vii+106 p., 24 figs., 51 tables. NTIS Access. No. PB2002-105456.

162. **U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments – 2000.** Edited by Gordon T. Waring, Janeen M. Quintal, and Steven L. Swartz, with contributions from (listed alphabetically) Neilo B. Barros, Phillip J. Clapham, Timothy V.N. Cole, Carol P. Fairfield, Larry J. Hansen, Keith D. Mullin, Daniel K. Odell, Debra L. Palka, Marjorie C. Rossman, U.S. Fish and Wildlife Service, Randall S. Wells, and Cynthia Yeung. November 2000. ix + 303 p., 43 figs., 55 tables, 3 app. NTIS Access. No. PB2001-104091.

163. Essential Fish Habitat Source Document: Red Deepsea Crab, *Chaceon (Geryon) quinquedens*, Life History and Habitat Characteristics. By Frank W. Steimle, Christine A. Zetlin, and Sukwoo Chang. January 2001. v+27 p., 8 figs., 1 table. NTIS Access. No. PB2001-103542.

164. An Overview of the Social and Economic Survey Administered during Round II of the Northeast Multispecies Fishery Disaster Assistance Program. By Julia Olson and Patricia M. Clay. December 2001. v+69 p., 3 figs., 18 tables, 2 app. NTIS Access. No. PB2002-105406.

165. **A Baseline Socioeconomic Study of Massachusetts' Marine Recreational Fisheries.** By Ronald J. Salz, David K. Loomis, Michael R. Ross, and Scott R. Steinback. December 2001. viii+129 p., 1 fig., 81 tables, 4 app. NTIS Access. No. PB2002-108348.

166. **Report on the Third Northwest Atlantic Herring Acoustic Workshop, University of Maine Darling Marine Center, Walpole, Maine, March 13-14, 2001.** By William L. Michaels, editor and coconvenor, and Philip Yund, coconvenor. December 2001. iv+18 p., 14 figs., 2 app. NTIS Access. No. PB2003-101556.

NOAA Technical Memorandum NMFS-NE-171

This series represents a secondary level of scientific publishing. All issues employ thorough internal scientific review; some issues employ external scientific review. Reviews are -- by design -- transparent collegial reviews, not anonymous peer reviews. All issues may be cited in formal scientific communications.

Length-Weight Relationships for 74 Fish Species Collected during NEFSC Research Vessel Bottom Trawl Surveys, 1992-99

Susan E. Wigley, Holly M. McBride, and Nancy J. McHugh

National Marine Fisheries Serv., Woods Hole Lab., 166 Water St., Woods Hole, MA 02543

U. S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., USN (ret.), Administrator National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries Northeast Fisheries Science Center Woods Hole, Massachusetts

March 2003

Editorial Notes

Species Names: The NEFSC Editorial Office's policy on the use of species names in all technical communications is generally to follow the American Fisheries Society's lists of scientific and common names for fishes (*i.e.*, Robins *et al.* 1991^a), mollusks (*i.e.*, Turgeon *et al.* 1998^b), and decapod crustaceans (*i.e.*, Williams *et al.* 1989^c), and to follow the Society for Marine Mammalogy's guidance on scientific and common names for marine mammals (*i.e.*, Rice 1998^d). Exceptions to this policy occur when there are subsequent compelling revisions in the classifications of species, resulting in changes in the names of species (*e.g.*, Cooper and Chapleau 1998^e, McEachran and Dunn 1998^f).

Statistical Terms: The NEFSC Editorial Office's policy on the use of statistical terms in all technical communications is generally to follow the International Standards Organization's handbook of statistical methods (*i.e.*, ISO 1981^g).

Internet Availability: This issue of the *NOAA Technical Memorandum NMFS-NE* series is being copublished, *i.e.*, as both a paper and Web document. The Web document, which will be in HTML (and thus searchable) and PDF formats, can be accessed at: *http://www.nefsc.noaa.gov/nefsc/publications/*.

^dRice, D.W. 1998. Marine mammals of the world: systematics and distribution. Soc. Mar. Mammal. Spec. Publ. 4; 231 p.

- ^eCooper, J.A.; Chapleau, F. 1998. Monophyly and interrelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. *Fish. Bull. (U.S.)* 96:686-726.
- ^fMcEachran, J.D.; Dunn, K.A. 1998. Phylogenetic analysis of skates, a morphologically conservative clade of elasmobranchs (Chondrichthyes: Rajidae). *Copeia* 1998(2):271-290.
- ^gISO [International Organization for Standardization]. 1981. ISO standards handbook 3: statistical methods. 2nd ed. Geneva, Switzerland: ISO; 449 p.

^aRobins, C.R. (chair); Bailey, R.M.; Bond, C.E.; Brooker, J.R.; Lachner, E.A.; Lea, R.N.; Scott, W.B. 1991. Common and scientific names of fishes from the United States and Canada. 5th ed. *Amer. Fish. Soc. Spec. Publ.* 20; 183 p.

^bTurgeon, D.D. (chair); Quinn, J.F., Jr.; Bogan, A.E.; Coan, E.V.; Hochberg, F.G.; Lyons, W.G.; Mikkelsen, P.M.; Neves, R.J.; Roper, C.F.E.; Rosenberg, G.; Roth, B.; Scheltema, A.; Thompson, F.G.; Vecchione, M.; Williams, J.D. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. 2nd ed. *Amer. Fish. Soc. Spec. Publ.* 26; 526 p.

^eWilliams, A.B. (chair); Abele, L.G.; Felder, D.L.; Hobbs, H.H., Jr.; Manning, R.B.; McLaughlin, P.A.; Pérez Farfante, I. 1989. Common and scientific names of aquatic invertebrates from the United States and Canada: decapod crustaceans. *Amer. Fish. Soc. Spec. Publ.* 17; 77 p.

Contents

Abstract	v
Introduction	1
Methods	1
Data Sources	1
Length-Weight Parameters	1
Length Ranges	2
Results	2
Length-Weight Parameters	2
Length Ranges	3
Discussion	3
Acknowledgments	3
References Cited	4

Tables

Sample size, length range, length-weight parameter estimates and the standard deviations (standard errors)	
of those estimates, standard error of the weight estimate, and regression correlation coefficient for 74 fish	
species, by season or seasonal groups and by gender	5
Comparison of length ranges and minimum and maximum lengths used in this study to those observed on	
NEFSC bottom trawl surveys during 1963-99, including differences in the minimum and maximum lengths	
relative to the 1963-99 values, and the ratios of this study's ranges divided by the 1963-99 surveys'	
ranges	. 13
Minimum and maximum lengths observed for species collected during 1963-99 NEFSC bottom trawl surveys,	
by gender	. 15
	Sample size, length range, length-weight parameter estimates and the standard deviations (standard errors) of those estimates, standard error of the weight estimate, and regression correlation coefficient for 74 fish species, by season or seasonal groups and by gender

Figures

Figure 1. The continental shelf region from Cape Hatteras, North Carolina, to Nova Scotia surveyed during the NEFS	SC
winter, spring, and autumn bottom trawl surveys	vi

Acronyms

FSCS =	Fisheries Scientific	Computer System
--------	----------------------	-----------------

- NEFSC = Northeast Fisheries Science Center
- NODC = National Oceanographic Data Center

ABSTRACT

This study is the first comprehensive examination of spatially and temporally synoptic length-weight observations collected along the Northeast coast of the United States during the Northeast Fisheries Science Center's (NEFSC's) research vessel winter, spring, and autumn bottom trawl surveys from 1992 to 1999. Linear regression using natural logarithmic transformation data was performed to calculate a and b coefficients. Analysis of covariance was used to test for seasonal and gender differences. Length-weight parameters were calculated for 74 fish species: 39 species showed seasonal differences, and 28 species showed gender differences. Minimum and maximum length observations for the first 37 years of the time series (*i.e.*, 1963-99) of NEFSC research vessel bottom trawl surveys are also presented. Results from this study can be used within the "real-time" auditing of length-weight data collected by the Fisheries Scientific Computer System, the NEFSC's at-sea electronic data acquisition system.

Keywords: length-weight relationship, groundfish, demersal fish

Figure 1. The continental shelf region from Cape Hatteras, North Carolina, to Nova Scotia surveyed during the NEFSC winter, spring, and autumn bottom trawl surveys.

INTRODUCTION

At the Northeast Fisheries Science Center (NEFSC), length-weight parameters are routinely used in the estimation of numbers of fish landed in order to estimate fishery removals for stock assessments (e.g., see Wigley and Serchuk 1992). Additionally, length-weight relationships have been used in the auditing of NEFSC research vessel survey catch and biological data. However, many of the length-weight parameter values currently being used in the audit applications were derived from studies with limited sample sizes, combined genders, incomplete length ranges, restricted seasonal and/or geographical coverage, or, in many cases, from studies of unknown origin. Since the advent of recording individual fish weight during NEFSC bottom trawl surveys in 1992, numerous spatially and temporally synoptic length-weight observations have been obtained. This study is the first comprehensive examination of these data to update the length-weight parameters.

A consideration for updating these length-weight parameters is their use in the NEFSC's survey auditing procedures. Those procedures use length-weight equations at two levels: the species catch level and the individual fish level. At the species catch level, the audit calculates a derived weight for the catch based upon the length frequency of the catch, and compares that derived weight with the observed weight of the catch. At the individual fish level, the audit compares the derived weight of the individual fish with the observed weight of that individual. Updated parameters, especially those sensitive to gender and seasonal differences, could improve the effectiveness of the auditing procedures.

Another consideration for updating the length-weight parameters is the recent implementation of the Fisheries Scientific Computer System (FSCS), an at-sea electronic data acquisition system on board NEFSC research vessels. Within this system, data (*i.e.*, lengths and weights) are digitally recorded, thus enabling real-time auditing of these data using a length-weight equation during the data collection phase. When observed weights deviate from predicted weights, the FSCS produces an error message requiring a manual override which, in turn, slows down data collection. Updated parameters could minimize error messages within the FSCS for those species for which current length-weight relationships are problematic.

METHODS

DATA SOURCES

The NEFSC has conducted research vessel bottom trawl surveys to assess the distribution and relative abundance of groundfish along the east coast of the United States during the past three decades (Grosslein 1969; Azarovitz 1981). The survey employs a stratified random sampling design with tows at depths ranging from 5 to 366 meters. Geographic coverage of the spring and autumn surveys is from Cape Hatteras to Nova Scotia, and the winter survey from Cape Hatteras to the southern flank of Georges Bank (Figure 1).

Beginning in 1992, biological sampling procedures were expanded to include recording individual fish weight, in addition to recording the fish's length, gender, and maturity stage. Aboard ship, the fish are measured live or freshly killed to the nearest centimeter (total length or fork length, depending on the species, except for rays, where disk width is measured from wing tip to wing tip), and weighed (whole fish) to the nearest 0.001 kg. Gender and maturity stage of the fish are examined macroscopically and recorded into the following categories: 1) unsexed, male, or female; and 2) immature, developing, ripe, ripe & running, spent, or resting (Burnett *et al.* 1989).

Although many species exhibit dimorphoric growth by sex, the survey procedures for measuring and enumerating fish is, for the most part, conducted at an unsexed species level. However, a few exceptions occur for those species for which gender can be determined from external physical characteristics. Length data by species and gender are collected for spiny dogfish, smooth dogfish, American lobsters, and various crab species. Common and scientific names used throughout this study are in accordance with those endorsed by the American Fisheries Society (Williams *et al.* 1989; Robins *et al.* 1991; Turgeon *et al.* 1998), with the exception of some flounders (Cooper and Chapleau 1998) and rays (McEachran and Dunn 1998) which have undergone subsequent systematic revision.

Species for which five or more length-weight observations existed were analyzed in this study. For most species, data from two or three seasons were available; however, for a few species, a limited number of observations were available for a single season. Due to the limited geographic coverage of the winter survey, data from the winter surveys were excluded from analyses for several species, such as Acadian redfish, whose primary distribution occurs within the Gulf of Maine.

LENGTH-WEIGHT PARAMETERS

Length and weight observations were transformed using natural logarithms, and were plotted for visual inspection of outliers. Only extreme outliers attributed to data error were omitted from the analyses.

Where sufficient data were available, analysis of covariance (*i.e.*, test for homogeneity of slopes) was performed using PROC GLM (SAS Institute1985) to detect significant differences (P < 0.05) between season and gender. Since the NEFSC species audit compares observed catch weight with predicted catch weight based on the length frequency of observed fish, the first task was to test for seasonal differences in length-weight parameters for each species (with genders combined). Further exploration of the data was then conducted to determine if gender differences existed within seasonal group. Length-weight parameters were estimated by gender within a seasonal group as appropriate, according to the following linear regression using PROC REG (SAS Institute 1985):

$$\ln W = \ln a + b \ln L$$

where W = weight (kg), L = length (cm), a = y-intercept, and b = slope.

Residuals from the linear regressions were plotted and visually inspected for trends. Since raw data for existing length-weight relationships were not available for more rigorous statistical analysis, comparisons with length-weight relationships derived in this study were performed as follows: 1) 95% confidence intervals were derived for each length-weight relationship; 2) significant differences occurred if the predicted weights from the existing relationship fell outside the 95% confidence interval of the new length-weight relationship.

LENGTH RANGES

To evaluate whether the 1992-99 data used in this study to derive length-weight relationships were representative of the length ranges available to the survey for each species, historical observations of minimum and maximum lengths collected during NEFSC spring, autumn, and winter research vessel bottom trawl surveys from 1963 to 1999 were updated and compared to minimum and maximum lengths in this study. Additionally, range ratios were calculated by dividing the study length range by the historical length range.

The update of these length ranges was expanded beyond the 74 species in this study to include all species sampled during the surveys. This updated information can be utilized as part of the real-time audit of length measurements within the FSCS.

RESULTS

LENGTH-WEIGHT PARAMETERS

Between 1992 and 1999, a total of 24 NEFSC research vessel bottom trawl surveys were conducted, during which 242,693 individual fish length and weight observations were recorded for the 74 fish species (comprising 2 classes, 9 orders, and 35 families) analyzed in this study. Sample sizes ranged from six for greater amberjack, northern kingfish, and smooth butterfly ray, to 26,590 for spiny dogfish (Table 1). In Table 1 and all subsequent tables, species are ordered according to the National Oceanographic Data Center (NODC) taxonomic code. For 19 species, data were not available for multiple seasons, precluding seasonal analyses for those species. Of the remaining 55 species, 16 did not exhibit significantly different (P < 0.05) length-weight relationships by season; 39 did. For four species (*i.e.*, round herring, Atlantic thread herring, Atlantic spadefish and buckler dory), data were not available on gender, precluding gender analyses for these species. Of the remaining 70 species, 28 had significantly different length-weight relationships by gender; 42 did not. Sample sizes, length ranges, length-weight parameter estimates and the standard deviations (standard errors) of those estimates, standard errors of the weight estimates, and regression correlation coefficients are presented in Table 1 by species for appropriate season or seasonal groups and for gender.

Although residual patterns generally showed no trend, a few exceptions should be noted. For some species, residual patterns (either positive or negative) existed for smaller fish, and may relate to the sensitivity of the Marel weighing scales in open-deck environments and/or recorder bias in determining a true weight during scale fluctuations in heavy seas. Small sea ravens exhibited negative residuals, which might be attributed to some size specificity in the characteristic behavior of this species to "gulp" water when captured. The analysis of bluefish in the spring revealed a pattern in which residuals were negative at smaller sizes and became positive at larger sizes; although this pattern would normally result in rejection of the regression, the analysis was retained due to the possibility that fish greater than 40 cm (the length around which the residuals pivoted) collected in the southern portion of the survey might be reproductively active and therefore include the weight of the maturing gonad. Scup exhibited a funnel-shaped residual pattern, with decreasing deviation as fish length increased; this pattern may be related to the log-log transformation model used in the study (Pienaar and Thomson 1969).

Comparisons of length-weight relationships established by this study with those currently used in the NEFSC auditing process indicated no significant differences at the catch level (genders combined) for 42 of 74 species. However, there were nine instances in which the weights predicted by the current length-weight relationships fell entirely outside of the 95% confidence intervals of the weights predicted by this study. These species were: chain dogfish, rosette skate, southern stingray, bluntnose stingray, cownose ray, Atlantic thread herring, fawn cusk-eel, Atlantic spadefish, and spot. For Atlantic angel shark, predicted weights from the current relationship for intermediate-sized fish occurred within the confidence interval, but those for smaller- and larger-sized fish did not. There were five species for which predicted weights from the current relationship were significantly different for larger fish (i.e., Atlantic sturgeon, round herring, Atlantic herring, greater amberjack, and cunner), and 17 species for which smaller fish were problematic (i.e., spiny butterfly ray, Atlantic sharpnose shark, smooth dogfish, spiny dogfish, clearnose skate, Spanish sardine, red hake, alewife, cusk, silver hake, Acadian redfish, bluefish, black sea bass, scup, southern kingfish, fourspot flounder, and witch flounder).

There were seven species for which gender-specific predicted weights from the current length-weight relationship were significantly different from gender-specific predicted weights in this study (*i.e.*, rosette skate, red hake, white hake, Acadian redfish, striped bass, weakfish, and yellowtail flounder). No comparisons were possible for the seven species for which no current gender-specific relationship existed (*i.e.*, clearnose skate, little skate, winter skate, spiny butterfly ray, longhorn sculpin, ocean pout, and sea raven).

LENGTH RANGES

Generally, the length ranges used to derive lengthweight relationships in this study represented a significant proportion of the ranges which have been historically observed, as evidenced by an all-species average range ratio of 72% (Table 2). For 14 species, range ratios were below 0.50, suggesting that the length ranges utilized in this study may not have represented the historically observed length range. However, for 10 of those 14 species, sample sizes were quite small (i.e., Atlantic torpedo ray, smooth butterfly ray, Atlantic sturgeon, alewife, northern searobin, greater amberjack, vermilion snapper, northern kingfish, Atlantic spadefish, and tautog). There appeared to be adequate sample sizes for the remaining four species with range ratios below 0.50, but larger-sized specimens of those species were noticeably absent from the study data set (i.e., Atlantic sharpnose shark, Spanish sardine, fawn cusk-eel, and Spanish mackerel; Table 2).

The observed minimum and maximum lengths (cm) for all species measured during NEFSC bottom trawl surveys since 1963 are summarized in Table 3. Approximately 2.83 million lengths have been obtained from species comprising 9 phyla, 25 classes, 89 orders, and 171 families. For species which are sorted by gender during the survey (*e.g.*, spiny dogfish, American lobster), length values for males, females, and unknown genders are reported in Table 3.

DISCUSSION

Zar (1968), Glass (1969), and more recently Hayes *et al.* (1995) presented information supporting the use of nonlinear least-squares regression techniques for allometric modeling; however, Xiao and Ramm (1994) concluded that the use of log-transformed data was appropriate for describing length-weight relationships in fishes. In this study, the small sample sizes associated with several species were potentially problematic with respect to asymptotic variance properties of nonlinear regression. Our choice of an allometric model was practical; linear regression using log-log transformed data facilitated statistical comparisons of gen-

der and seasonal relationships, and allowed a single method to be applied to all species within the study, regardless of sample size.

Length-weight relationships derived in this study generally compare favorably with those of other published studies. For 35 of 78 species analyzed by Wilk *et al.* (1978) which were also examined in this study, only the relationship for fawn cusk-eel was significantly different. While this might be attributed to the larger sample size and greater size range available to Wilk *et al.* (1978), the use of the Wilk *et al.* (1978) relationship within the FSCS during the NEFSC spring 2001 bottom trawl survey resulted in numerous realtime audit messages indicating an erroneous weight for a given length. When the parameters derived in this study were substituted into FSCS, these error conditions were eliminated for subsequent fawn cusk-eel samples.

There were also no apparent differences between lengthweight relationships for four of the six flatfish species derived by Lux (1969) and the relationships derived by this study; differences for witch and fourspot flounders may be related to the restricted geographical range of Lux's (1969) samples. This similarity in relationships is somewhat remarkable given the difficulties in obtaining accurate fish weights at sea prior to the development of modern electronic motion-compensated scales. Wilk *et al.* (1978) froze fish at sea and obtained thawed weights back at the laboratory, while Lux (1969) weighed his samples at sea with handheld spring scales. This similarity in findings suggests both the diligence of these investigators as well as the underlying robustness of fish length-weight relationships to measurement error.

In summary, this study updates length-weight parameters for many species routinely encountered during NEFSC bottom trawl surveys, utilizing uniform methods and modern scale technology. The availability of whole live body weight from sexed fish collected across seasonal surveys takes into account annual cycles of fish feeding and reproduction, allowing derivation of length-weight relationships at the gender and/or season level. Analysis of these data provided insights into areas, such as length range or sample size for some species, in which additional sampling can be targeted in future surveys. The length-weight relationships derived in this study also support the improved processing of survey data within the recently-implemented FSCS environment, providing critical fishery independent data in a more timely fashion.

ACKNOWLEDGMENTS

We wish to express our appreciation to the sea-going scientific staff of the NEFSC who diligently collected the biological observations used in this study. We thank the anonymous reviewers for their helpful comments and review of this manuscript.

REFERENCES CITED

- Azarovitz, T.R. 1981. A brief historical review of the Woods Hole Laboratory trawl survey time series. *Can. Spec. Publ. Fish. Aquat. Sci.* 58:62-67.
- Burnett, J.; O'Brien, L.; Mayo, R.K.; Darde, J.; Bohan, M. 1989. Finfish maturity sampling and classification schemes used during the Northeast Fisheries Center bottom trawl survey. NOAA Tech. Memo. NMFS-F/NEC-76; 14 p.
- Cooper, J.A.; Chapleau, F. 1998. Monophyly and interrelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. *Fish. Bull. (Washington, D.C.)* 96:686-726.
- Glass, N.R. 1969. Discussion of calculation of power function with special reference to respiratory metabolism in fish. J. Fish. Res. Board Can. 26:2643-2650.
- Grosslein, M. 1969. Groundfish survey program of BCF Woods Hole. *Commer. Fish. Rev.* 31(8-9):22-30.
- Hayes, D.B.; Brodziak, J.K.T.; O'Gorman, J.B. 1995. Efficiency and bias of estimators and sampling designs for determining length-weight relationships of fish. *Can. J. Fish. Aquat. Sci.* 52:84-92.
- Lux, F.E. 1969. Length-weight relationships of six New England flatfishes. *Trans. Am. Fish. Soc.* 98(4):617-621.
- McEachran, J.D.; Dunn, K.A. 1998. Phylogenetic analysis of skates, a morphologically conservative clade of elasmobranchs (Chondrichthyes: Rajidae). *Copeia* 1998(2):271-290.
- Pienaar, L.V.; Thomson, J.A. 1969. Allometric weight-length regression model. J. Fish. Res. Board Can. 26:123-131.
- Robins, C.R. (chair); Bailey, R.M.; Bond, C.E.; Brooker, J.R.; Lachner, E.A.; Lea, R.N.; Scott, W.B. 1991. Common and

scientific names of fishes from the United States and Canada. 5th ed. *Am. Fish. Soc. Spec. Publ.* 20; 183 p.

- SAS Institute. 1985. SAS user's guide: statistics. Version 5. Cary, NC: SAS Institute; 956 p.
- Turgeon, D.D. (chair); Quinn, J.F., Jr.; Bogan, A.E.; Coan, E.V.; Hochberg, F.G.; Lyons, W.G.; Mikkelsen, P.M.; Neves, R.J.; Roper, C.F.E.; Rosenberg, G.; Roth, B.; Scheltema, A.; Thompson, F.G.; Vecchione, M.; Williams, J.D. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. 2nd ed. Am. Fish. Soc. Spec. Publ. 26; 526 p.
- Wigley, S.E.; Serchuk, F.M. 1992. Spatial and temporal distributions of juvenile Atlantic cod *Gadus morhua* in the Georges Bank - Southern New England region. *Fish. Bull.* (*Washington, D.C.*) 90(3):599-606.
- Wilk, S.J.; Morse, W.; Ralph, D.E. 1978. Length-weight relationships of fishes collected in the New York Bight. *Bull. N.J. Acad. Sci.* 23(2):58-64.
- Williams, A.B. (chair); Abele, L.G; Felder, D.L.; Hobbs, H.H., Jr.; Manning, R.B.; McLaughlin, P.A.; Pérez Farfante, I. 1989. Common and scientific names of aquatic invertebrates from the United States and Canada: decapod crustaceans. Am. Fish. Soc. Spec. Publ. 17; 77 p.
- Xiao, Y.; Ramm, D.C. 1994. A simple generalized model of allometry, with examples of length and weight relationships for 14 species of groundfish. *Fish. Bull. (Washington, D.C.)* 92:664-670.
- Zar, J.H. 1968. Calculation and miscalculation of the allometric equation as a model in biological data. *Bioscience* 18:1118-1120.

Table 1. Sample size, length range (cm), length-weight parameter estimates (*a* and *b*) and the standard deviations (standard errors) of those estimates (s_a and s_b), standard error of the weight estimate (s_w), and regression correlation coefficient (r^2) for 74 fish species, by season or seasonal groups and by gender ("Unsexed" = gender not specified; "Combined" = unsexed, males, and females). (Species are ordered by NODC taxonomic code.)

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	s _a	Ь	S _b	S _W	r^2
Sand tiger Odontaspis taurus	Autumn	Combined	15	150-260	-13.4887	1.0581	3.2927	0.1984	0.1169	0.9549
Chain dogfish	Win/Aut	Combined	80	10-45	-12.9053	0.2401	3.1282	0.0667	0.1490	0.9658
Scynorninus renjer		Male	55	18-45	-12.2155	0.3924	2.9322	0.1077	0.1498	0.9332
		Female	25	10-43	-13.5677	0.2266	3.3321	0.0645	0.1065	0.9915
Atlantic sharpnose shark Rhizoprionodon terraenovae	Autumn	Combined	101	50-100	-12.8361	0.2955	3.1069	0.0665	0.0801	0.9566
Smooth dogfish	Autumn	Combined	1679	40-135	-12.5532	0.0449	3.0006	0.0103	0.1108	0.9808
Musielus canis		Male	872	40-112	-12.3265	0.0588	2.9436	0.0135	0.0974	0.9821
		Female	807	44-135	-12.7087	0.0646	3.0415	0.0147	0.1179	0.9815
	Spring	Combined	508	52-126	-13.3913	0.1346	3.1641	0.0301	0.1307	0.9563
		Male	296	52-115	-13.1021	0.1710	3.0918	0.0381	0.1135	0.9573
		Female	212	54-126	-13.7926	0.1921	3.2652	0.0431	0.1352	0.9647
	Winter	Combined	357	47-150	-13.7444	0.1290	3.2538	0.0290	0.1368	0.9726
		Male	158	51-112	-12.7517	0.1422	3.0164	0.0323	0.0943	0.9824
		Female	199	47-150	-14.1554	0.1754	3.3543	0.0391	0.1410	0.9740
Sandbar shark Carcharhinus plumbeus	Spr/Aut	Combined	34	63-174	-12.6740	0.2798	3.1706	0.0620	0.1222	0.9879
Spiny dogfish	Autumn	Combined	6986	22-106	-12.6733	0.0256	3.0596	0.0061	0.1220	0.9728
Squalus acanthias		Male	3117	23-90	-12.3144	0.0378	2.9651	0.0091	0.1141	0.9716
		Female	3869	22-106	-12.8210	0.0328	3.1012	0.0078	0.1194	0.9762
	Spring	Combined	12070	13-114	-13.2302	0.0211	3.1863	0.0050	0.1376	0.9714
		Male	4676	20-91	-12.5455	0.0301	3.0075	0.0072	0.1196	0.9738
		Female	7393	13-114	-13.4073	0.0256	3.2369	0.0060	0.1297	0.9751
	Winter	Combined	7534	22-109	-13.0195	0.0245	3.1231	0.0058	0.1266	0.9745
		Male	3691	22-94	-12.4979	0.0321	2.9871	0.0076	0.1049	0.9766
		Female	3843	22-109	-13.3403	0.0303	3.2108	0.0072	0.1211	0.9811
Atlantic angel shark	Autumn	Combined	17	35-120	-12.1783	0.2064	3.1420	0.0485	0.0916	0.9964
Squatina aumeril	Win/Spr	Combined	53	32-84	-11.5279	0.2434	2.9556	0.0605	0.1051	0.9791
Atlantic torpedo ray <i>Torpedo nobiliana</i>	Autumn	Combined	7	71-102	-14.4803	2.1196	3.8164	0.4790	0.1339	0.9270

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln <i>a</i>	S _a	b	s _b	S _W	r ²
Clearnose skate	Win/Spr/Aut	Combined	99	22-71	-13.8683	0.2567	3.4235	0.0638	0.1446	0.9674
Raja eglanteria		Male	38	37-68	-14.1912	0.4826	3.4918	0.1193	0.1091	0.9597
		Female	59	22-71	-13.8600	0.3105	3.4291	0.0774	0.1596	0.9718
Little skate	Winter	Combined	4196	10-54	-12.4971	0.0335	3.1310	0.0091	0.1402	0.9656
Leucoraja erinacea		Male	1989	10-54	-12.4489	0.0482	3.1110	0.0131	0.1399	0.9659
		Female	2177	11-53	-12.5822	0.0459	3.1604	0.0125	0.1362	0.9670
	Spring	Combined	5897	8-59	-12.4462	0.0237	3.1280	0.0066	0.1507	0.9747
		Male	2610	9-57	-12.3175	0.0323	3.0842	0.0089	0.1384	0.9788
		Female	3253	8-59	-12.6115	0.0334	3.1805	0.0093	0.1494	0.9732
	Autumn	Combined	3555	6-63	-12.6020	0.0273	3.1567	0.0075	0.1309	0.9806
		Male	1559	10-63	-12.5172	0.0375	3.1247	0.0103	0.1265	0.9834
		Female	1971	6-60	-12.6889	0.0381	3.1872	0.0104	0.1271	0.9796
Barndoor skate Dipturus laevis	Win/Aut	Combined	67	23-121	-13.3224	0.1289	3.2919	0.0325	0.1063	0.9936
Winter skate	Winter	Combined	2037	13-106	-13.0892	0.0353	3.3111	0.0089	0.1214	0.9855
Leucoraja ocellata		Male	1015	20-106	-13.0672	0.0466	3.3029	0.0116	0.1185	0.9877
		Female	1004	16-91	-13.2020	0.0571	3.3428	0.0146	0.1233	0.9811
	Spring	Combined	3058	13-106	-13.0088	0.0329	3.2993	0.0083	0.1293	0.9810
		Male	1286	16-106	-12.9598	0.0462	3.2819	0.0116	0.1256	0.9843
		Female	1760	13-98	-13.1083	0.0464	3.3285	0.0118	0.1299	0.9783
	Autumn	Combined	2754	14-111	-13.1531	0.0302	3.3199	0.0075	0.1177	0.9861
		Male	1161	14-111	-13.0591	0.0417	3.2904	0.0103	0.1178	0.9888
		Female	1583	16-100	-13.3419	0.0430	3.3719	0.0108	0.1133	0.9841
Rosette skate	Spring	Combined	10	32-43	-13.6734	1.6389	3.3526	0.4508	0.1003	0.8737
Leucoraja garmani	Autumn	Combined	22	14-42	-12.5504	0.2384	3.0718	0.0690	0.1086	0.9900
		Male	11	14-42	-12.4771	0.1835	3.0307	0.0537	0.0607	0.9972
		Female	11	15-42	-12.4737	0.3467	3.0688	0.0993	0.1073	0.9907
Smooth skate	Spring	Combined	60	18-65	-12.5408	0.2045	3.0655	0.0553	0.1322	0.9815
muucoruju semu	Autumn	Combined	72	15-62	-13.0139	0.1306	3.1812	0.0352	0.1039	0.9915
Thorny skate Amblyraja radiata	Win/Spr/Aut	Combined	1044	10-105	-12.0880	0.0363	3.1197	0.0096	0.1521	0.9902
Southern stingray ^a Dasyatis americana	Spr/Aut	Combined	10	45-100	-10.9402	0.3289	3.1428	0.0802	0.0558	0.9948
Roughtail stingray ^a Dasyatis centroura	Autumn	Combined	27	36-155	-10.3320	0.0582	3.0222	0.0520	0.1632	0.9908

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	S _a	Ь	s _b	S _W	r ²
Bluntnose stingray ^a	Autumn	Combined	149	18-104	-10.8751	0.0944	3.2275	0.0247	0.1295	0.9915
Dasyatis say	Spring	Combined	7	39-103	-10.5372	0.1955	3.0527	0.0453	0.0422	0.9989
Spiny butterfly ray ^a	Spring	Combined	16	52-187	-13.0635	0.3636	3.3060	0.0783	0.1336	0.9922
Gymnura altavela	Autumn	Combined	67	38-210	-12.4197	0.1267	3.1787	0.0281	0.0906	0.9949
Smooth butterfly ray ^a <i>Gymnura micrura</i>	Autumn	Combined	6	40-84	-11.7989	0.4536	3.0742	0.1104	0.0820	0.9949
Bullnose ray ^a Myliobatis freminvillei	Autumn	Combined	222	28-129	-12.1806	0.0768	3.2885	0.0195	0.0944	0.9923
Cownose ray ^a	Autumn	Combined	78	34-103	-11.8649	0.1821	3.2327	0.0464	0.0754	0.9846
Rhinoptera bonasus	Spring	Combined	5	43-51	-7.8039	0.8913	2.0958	0.2308	0.0309	0.9649
Atlantic sturgeon Acipenser oxyrhynchus	Spr/Aut	Combined	9	84-159	-14.2902	0.5509	3.4547	0.1164	0.0821	0.9921
American shad Alosa sapidissima	Spr/Aut	Combined	120	8-53	-12.1377	0.1419	3.2207	0.0427	0.1792	0.9797
Blueback herring Alosa aestivalis	Spring	Combined	102	7-29	-12.2146	0.1375	3.2428	0.0472	0.1332	0.9792
Alewife Alosa pseudoharengus	Spr/Aut	Combined	20	10-27	-13.3875	0.5321	3.6716	0.1796	0.1936	0.9587
Atlantic herring	Autumn	Combined	3779	4-34	-11.5760	0.0391	2.9794	0.0123	0.1314	0.9400
Clupea harengus		Male	1908	10-34	-11.3460	0.0575	2.9055	0.0180	0.1235	0.9318
		Female	1812	11-34	-11.6549	0.0660	3.0065	0.0206	0.1365	0.9220
	Spring	Combined	7101	5-37	-11.7972	0.0217	3.0314	0.0070	0.1345	0.9636
		Male	3244	10-37	-11.5442	0.0336	2.9545	0.0107	0.1219	0.9590
		Female	3384	10-34	-11.5600	0.0322	2.9570	0.0103	0.1270	0.9607
	Winter	Combined	2126	8-33	-11.2575	0.0455	2.8559	0.0144	0.1303	0.9486
Round herring <i>Etrumeus teres</i>	Autumn	Unsexed	313	11-20	-11.4756	0.1509	2.9645	0.0573	0.1167	0.8959
Atlantic thread herring Opisthonema oglinum	Autumn	Unsexed	102	5-18	-12.9785	0.1083	3.7242	0.0426	0.1780	0.9871
Spanish sardine Sardinella aurita	Autumn	Combined	98	8-18	-11.8132	0.2994	3.1463	0.1254	0.1390	0.8678
Goosefish Lonking groupsis	Autumn	Combined	961	5-98	-10.7106	0.0404	2.9227	0.0118	0.2007	0.9845
Lopnius americanus	Win/Spr	Combined	2850	9-101	-10.7668	0.0334	2.9302	0.0092	0.1900	0.9728
		Male	1427	10-74	-10.5530	0.0504	2.8696	0.0138	0.1813	0.9681
		Female	1356	11-101	-10.8690	0.0494	2.9608	0.0135	0.1957	0.9726

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	S _a	b	s _b	S _W	r ²
Atlantic cod	Winter	Combined	755	13-116	-11.7677	0.0411	3.0527	0.0104	0.1065	0.9913
Gadus morhua	Spring	Combined	3206	4-141	-11.7803	0.0177	3.0606	0.0045	0.1187	0.9930
	Autumn	Combined	3078	4-120	-11.9920	0.0180	3.1262	0.0047	0.1087	0.9931
Pollock Pollachius virens	Autumn	Combined	1097	13-112	-11.8353	0.0316	3.1151	0.0086	0.1099	0.9917
	Win/Spr	Combined	1144	13-105	-11.9004	0.0228	3.1024	0.0062	0.1101	0.9954
Red hake	Winter	Combined	1391	3-54	-12.2601	0.0295	3.0661	0.0092	0.1703	0.9877
Urophycis chuss		Male	490	7-39	-12.1244	0.0753	3.0164	0.0232	0.1339	0.9719
		Female	720	7-54	-12.4700	0.0562	3.1338	0.0165	0.1258	0.9804
	Spring	Combined	4967	3-58	-12.3743	0.0151	3.0979	0.0046	0.1395	0.9893
		Male	2152	6-52	-12.4431	0.0259	3.1139	0.0079	0.1220	0.9863
		Female	2488	6-58	-12.6066	0.0242	3.1684	0.0070	0.1153	0.9879
	Autumn	Combined	6223	2-68	-12.0276	0.0132	3.0162	0.0040	0.1690	0.9894
		Male	2355	8-68	-12.1720	0.0356	3.0491	0.0106	0.1193	0.9723
		Female	3213	7-62	-12.4836	0.0297	3.1533	0.0085	0.1242	0.9773
Spotted hake	Winter	Combined	1816	4-43	-12.1682	0.0267	3.1332	0.0086	0.1647	0.9866
Urophycis regia		Male	2786	5-35	-12.3328	0.0815	3.1791	0.0263	0.1517	0.9559
		Female	4079	4-43	-12.3610	0.0574	3.1957	0.0174	0.1442	0.9722
	Spring	Combined	2319	3-42	-11.9892	0.0202	3.0823	0.0070	0.1922	0.9881
		Male	778	5-35	-12.1924	0.0396	3.1437	0.0134	0.1482	0.9862
		Female	1079	4-42	-12.0712	0.0273	3.1139	0.0089	0.1378	0.9914
	Autumn	Combined	3378	12-41	-11.9634	0.0317	3.0927	0.0101	0.1174	0.9651
		Male	1331	13-32	-11.0718	0.0524	2.7812	0.0174	0.0982	0.9506
		Female	2038	12-41	-11.8596	0.0423	3.0696	0.0132	0.1124	0.9637
White hake	Autumn	Combined	3889	4-126	-12.4000	0.0193	3.1715	0.0052	0.1363	0.9897
Urophycis tenuis		Male	1790	7-95	-12.6846	0.0341	3.2506	0.0094	0.1203	0.9853
		Female	1990	7-126	-12.6741	0.0311	3.2407	0.0081	0.1280	0.9878
	Spring	Combined	2054	10-105	-12.9500	0.0294	3.2903	0.0079	0.1165	0.9884
		Male	883	14-105	-12.9063	0.0548	3.2812	0.0151	0.1198	0.9816
		Female	1155	12-104	-13.0099	0.0392	3.3039	0.0102	0.1130	0.9891
	Winter	Combined	189	26-87	-13.1714	0.0998	3.3669	0.0268	0.0952	0.9883
Cusk Brosme brosme	Win/Spr/Aut	Combined	186	6-95	-12.2140	0.0706	3.1785	0.0179	0.1006	0.9942

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	S _a	Ь	s _b	S _W	r ²
Haddock	Autumn	Combined	3959	7-88	-11.8111	0.0127	3.0888	0.0036	0.1183	0.9947
Melanogrammus aeglefinus	Win/Spr	Combined	3166	4-87	-11.8062	0.0157	3.0766	0.0044	0.1004	0.9937
		Male	1447	13-77	-11.7438	0.0220	3.0572	0.0061	0.0951	0.9943
		Female	1629	13-87	-11.8655	0.0241	3.0949	0.0066	0.1024	0.9927
Silver hake	Winter	Combined	2975	5-51	-12.3367	0.0205	3.1056	0.0065	0.1555	0.9873
Merluccius bilinearis	Spring	Combined	8158	4-58	-12.4934	0.0126	3.1512	0.0042	0.1538	0.9858
	Autumn	Combined	11965	3-63	-12.1353	0.0098	3.0606	0.0032	0.1713	0.9875
		Male	4042	7-41	-12.2351	0.0290	3.0869	0.0092	0.1193	0.9652
		Female	6181	7-63	-12.6439	0.0214	3.2186	0.0065	0.1264	0.9755
Offshore hake <i>Merluccius albidus</i>	Win/Spr/Aut	Combined	145	8-51	-12.2964	0.0927	3.1323	0.0276	0.0969	0.9890
Fawn cusk-eel Lepophidium profundorum	Spr/Aut	Combined	78	13-28	-13.7333	0.2467	3.2359	0.0813	0.1476	0.9542
Ocean pout	Win/Aut	Combined	1878	10-84	-13.5168	0.0403	3.2995	0.0105	0.1450	0.9813
Macrozoarces americanus	Spring	Combined	2242	7-98	-13.6429	0.0466	3.3459	0.0119	0.1610	0.9725
		Male	1060	18-84	-13.6860	0.0688	3.3592	0.0175	0.1632	0.9722
		Female	1142	15-76	-13.6464	0.0710	3.3442	0.0182	0.1579	0.9674
Buckler dory Zenopsis conchifera	Spr/Aut	Unsexed	23	9-53	-11.3806	0.1749	3.0387	0.0586	0.1187	0.9922
Acadian redfish	Spr/Aut	Combined	6739	3-47	-11.7005	0.0130	3.2036	0.0041	0.1304	0.9888
Sebusies juscialius		Male	2974	6-44	-11.4401	0.0256	3.1151	0.0082	0.1092	0.9797
		Female	3290	7-47	-11.7713	0.0228	3.2297	0.0070	0.1161	0.9846
Blackbelly rosefish Helicolenus dactylopterus	Spr/Aut	Combined	38	4-35	-11.1324	0.1238	3.0512	0.0428	0.1407	0.9930
Northern searobin <i>Prionotus carolinus</i>	Spring	Combined	17	21-34	-12.9982	0.3821	3.4712	0.1168	0.0720	0.9833
Sea raven	Winter	Combined	257	14-52	-11.5420	0.1523	3.1822	0.0443	0.1906	0.9529
Hemitripterus americanus	Spring	Combined	1449	8-64	-11.3646	0.0575	3.1551	0.0168	0.1988	0.9607
	Autumn	Combined	964	7-68	-11.5001	0.0552	3.1822	0.0162	0.1909	0.9756
		Male	396	9-53	-11.1562	0.0920	3.0726	0.0270	0.1771	0.9705
		Female	513	7-68	-11.7441	0.0808	3.2590	0.0235	0.1922	0.9741
Longhorn sculpin	Spring	Combined	2969	5-37	-11.8348	0.0322	3.1067	0.0100	0.1226	0.9702
octodecemspinosus	Win/Aut	Combined	2464	4-37	-11.5589	0.0257	3.0250	0.0081	0.1148	0.9828
		Male	861	8-36	-11.6352	0.0581	3.0461	0.0184	0.1030	0.9696
		Female	1514	6-37	-11.7330	0.0447	3.0800	0.0138	0.1099	0.9706

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	s _a	b	s _b	S _W	r ²
Striped bass	Spring	Combined	191	23-93	-11.7959	0.0800	3.1383	0.0206	0.1012	0.9919
Morone saxatilis		Male	76	23-81	-11.9776	0.1314	3.1998	0.0332	0.0977	0.9921
		Female	110	24-93	-11.5476	0.0762	3.0627	0.0199	0.0751	0.9955
	Autumn	Combined	102	49-102	-11.3773	0.2788	3.0139	0.0065	0.0967	0.9550
		Male	32	49-85	-10.8121	0.5170	2.8888	0.1222	0.0955	0.9491
		Female	53	50-102	-12.2380	0.3904	3.2072	0.0906	0.0932	0.9609
Black sea bass	Autumn	Combined	794	3-45	-11.2205	0.0296	3.0225	0.0108	0.1899	0.9900
Centropristis striata		Male	144	6-44	-10.7680	0.1122	2.8679	0.0358	0.1527	0.9783
		Female	393	5-45	-11.0314	0.0747	2.9709	0.0248	0.1295	0.9736
	Spring	Combined	458	4-54	-11.5992	0.0552	3.1220	0.0174	0.1690	0.9860
	Winter	Combined	998	4-49	-11.4782	0.0343	3.0743	0.0112	0.1825	0.9869
Bluefish Pomatomus saltatrix	Winter	Combined	54	32-72	-10.5191	0.3314	2.8071	0.0838	0.1318	0.9557
r omaiomus saitairix	Spring	Combined	67	3-79	-10.5744	0.1433	2.8040	0.0375	0.1418	0.9885
	Autumn	Combined	2112	4-80	-11.4296	0.0154	3.0548	0.0046	0.1173	0.9952
Greater amberjack Seriola dumerili	Autumn	Combined	6	30-80	-9.8906	0.2585	2.7221	0.0659	0.0584	0.9977
Scup Stanotomus shravons	Autumn	Combined	2456	4-30	-11.0698	0.0232	3.1365	0.0091	0.1530	0.9800
Sienoiomus chrysops	Win/Spr	Combined	853	6-38	-11.5033	0.0448	3.2446	0.0167	0.1705	0.9779
Vermilion snapper <i>Rhomboplites aurorubens</i>	Spring	Combined	14	8-21	-11.2151	0.2893	3.0106	0.1133	0.1136	0.9833
Weakfish Comoscion regalis	Autumn	Combined	3027	3-70	-11.4157	0.0159	2.9575	0.0051	0.1277	0.9911
Cynoscion reguis		Male	1277	7-70	-11.3755	0.0305	2.9476	0.0094	0.1108	0.9871
		Female	1374	10-70	-11.4663	0.0263	2.9724	0.0082	0.1060	0.9896
	Spring	Combined	105	13-62	-12.0264	0.0526	3.1338	0.0159	0.0897	0.9946
	Winter	Combined	13	36-63	-11.5030	0.2349	2.9903	0.0607	0.0725	0.9846
Spot Leiostomus xanthurus	Spring	Combined	14	15-24	-11.0401	0.7513	2.9481	0.2542	0.1441	0.9181
Leiosiomus xunnurus	Autumn	Combined	92	9-26	-11.8524	0.1859	3.3175	0.0650	0.1259	0.9666
Southern kingfish Menticirrhus americanus	Autumn	Combined	12	17-39	-12.9112	0.1793	3.4493	0.0565	0.0328	0.9973
Northern kingfish Menticirrhus saxatilis	Autumn	Combined	6	24-29	-12.4904	1.7432	3.2785	0.5332	0.0791	0.9043
Atlantic croaker Micropogonias undulatus	Autumn	Combined	995	6-44	-11.5983	0.0368	3.0924	0.0115	0.0884	0.9864
Atlantic spadefish Chaetodipterus faber	Spring	Unsexed	22	22-43	-10.1466	0.2692	2.9380	0.0758	0.0753	0.9856

Species	Season or Seasonal Group	Gender	N	Length Range (cm)	ln a	s _a	b	s _b	S _W	r ²
Tautog Tautoga onitis	Autumn	Combined	9	18-39	-10.9649	0.2126	3.0443	0.0626	0.0425	0.9970
Cunner	Spring	Combined	23	19-44	-11.1034	0.2544	3.0162	0.0760	0.0842	0.9868
Tautogolabrus adspersus	Winter	Combined	5	8-42	-11.1950	0.2075	3.0416	0.0667	0.0903	0.9986
	Autumn	Combined	14	10-36	-11.3943	0.2186	3.1311	0.0672	0.0917	0.9945
Atlantic wolffish Anarhichas lupus	Spr/Aut	Combined	160	24-107	-12.2186	0.1393	3.1439	0.0342	0.1408	0.9816
Atlantic mackerel	Winter	Combined	1371	17-45	-12.6661	0.0491	3.3128	0.0147	0.1170	0.9738
Scomber scombrus	Spring	Combined	2909	16-45	-12.6713	0.0264	3.3119	0.0079	0.0975	0.9836
		Male	1340	16-42	-12.7288	0.0395	3.3305	0.0119	0.0943	0.9833
		Female	1475	16-45	-12.6376	0.0376	3.3006	0.0113	0.1004	0.9831
	Autumn	Combined	771	12-42	-12.3766	0.0598	3.2615	0.0186	0.1057	0.9756
Spanish mackerel Scomberomorus maculatus	Autumn	Combined	159	18-59	-11.6374	0.1035	3.0242	0.0300	0.0924	0.9848
Butterfish	Autumn	Combined	6809	1-21	-10.6315	0.0182	2.9225	0.0077	0.2547	0.9553
r eprilus iriacaninus	Win/Spr	Combined	3496	3-23	-11.6824	0.0314	3.2930	0.0122	0.1782	0.9546
Summer flounder	Autumn	Combined	3082	12-74	-12.2841	0.0271	3.2156	0.0075	0.0965	0.9834
i uruneninys ueniulus		Male	1657	12-57	-12.3572	0.0392	3.2394	0.0111	0.0839	0.9810
		Female	1396	13-74	-12.4203	0.0433	3.2488	0.0118	0.1072	0.9820
	Spring	Combined	1044	15-72	-12.1424	0.0390	3.1651	0.0111	0.0903	0.9874
		Male	508	16-57	-12.1197	0.0588	3.1602	0.0170	0.0847	0.9856
		Female	527	16-72	-12.1866	0.0581	3.1759	0.0162	0.0955	0.9865
	Winter	Combined	5247	14-78	-12.3861	0.0260	3.2305	0.0072	0.1192	0.9749
		Male	2112	16-64	-12.3825	0.0500	3.2323	0.0141	0.1195	0.9612
		Female	3114	18-78	-12.4887	0.0333	3.2563	0.0090	0.1181	0.9766
Fourspot flounder	Spr/Aut	Combined	6140	3-49	-12.3202	0.0223	3.1463	0.0068	0.1186	0.9719
T drateninys obioligus		Male	2823	7-42	-12.2648	0.0427	3.1239	0.0133	0.1134	0.9517
		Female	3226	11-49	-12.5568	0.0334	3.2213	0.0101	0.1118	0.9696
	Winter	Combined	3269	5-45	-12.8160	0.0367	3.2932	0.0112	0.1400	0.9638
		Male	1221	10-41	-12.8046	0.0706	3.2835	0.0219	0.1376	0.9484
		Female	1989	9-45	-12.9049	0.0480	3.3227	0.0144	0.1350	0.9641

Species	Season or Seasonal	Gender	Ν	Length Range (cm)	ln a	s _a	Ь	s _b	S _W	r ²
W/m d	Group	Combined	2008	2.40	11.0002	0.0220	2 9721	0.0072	0 1526	0.0811
Scophthalmus aquosus	Autuilli	Mala	1210	4 36	10.0828	0.0229	2.0721	0.0075	0.1550	0.9611
		Earnala	1210	7.40	-10.9626	0.0504	2.8035	0.0155	0.1240	0.9011
	Sania a	Combined	2218	2 20	-10.8411	0.0364	2.0221	0.0133	0.1349	0.9340
	Spring	Mala	042	6.26	-11.3320	0.0208	2.9982	0.0084	0.1494	0.9829
		Formala	1162	0.20	-11.5050	0.0672	2.9781	0.0211	0.1134	0.9330
	Winton	Combined	2782	9-39	-11.7090	0.0095	2.0419	0.0211	0.1282	0.9497
Witch flourn dan	Win/Sur	Combined	2785	5-44	-11.3177	0.0209	2.2280	0.0085	0.1285	0.9797
Glyptocephalus cynoglossus	win/Spr	Combined	1595	0-04	-13.2151	0.0324	3.3289	0.0093	0.1411	0.9832
American alain	Autumn	Combined	1585	4-63	-12.7334	0.0255	3.1997	0.0077	0.1313	0.9910
Hippoglossoides platessoides	Win/Aut	Combined	4905	5.65	-12.7492	0.0185	3.3062	0.0050	0.1378	0.9862
	Spring	Mala	1(59	5-62	-12.8117	0.0195	2.2700	0.0038	0.1217	0.9854
		Famala	2020	0-48	-12./108	0.0317	3.2790	0.0097	0.1106	0.9850
		Female	2020	/-62	-12.9811	0.0292	3.3641	0.0085	0.1196	0.9872
Limanda ferruginea	Autumn	Combined	2753	4-50	-11.8381	0.0274	3.0559	0.0080	0.1055	0.9815
			12/3	12-49	-11.6605	0.0470	2.9983	0.0139	0.0972	0.9734
		Female	1428	9-50	-11.9764	0.0383	3.0995	0.0110	0.1051	0.9825
	Spring	Combined	2686	6-55	-12.3581	0.0415	3.2099	0.0120	0.1376	0.9638
		Male	1497	11-46	-11./34/	0.0612	3.0161	0.01/9	0.1026	0.9501
		Female	1160	6-55	-12.7073	0.0656	3.3235	0.0187	0.1442	0.9646
	Winter	Combined	3336	4-52	-12.4209	0.0319	3.2408	0.0091	0.1224	0.9742
		Male	1520	19-45	-12.0924	0.0591	3.1314	0.0172	0.0912	0.9564
		Female	1768	15-52	-12.9148	0.0585	3.3898	0.0164	0.1174	0.9603
Winter flounder Pseudopleuronectes	Winter	Combined	1196	4-59	-11.6892	0.0340	3.1189	0.0104	0.1324	0.9868
americanus		Male	445	8-49	-11.4862	0.0463	3.0459	0.0142	0.0982	0.9904
		Female	673	10-59	-11.8906	0.0473	3.1850	0.0142	0.1116	0.9869
	Spring	Combined	4018	5-59	-11.4718	0.0218	3.0431	0.0065	0.1246	0.9818
		Male	1642	7-54	-11.2363	0.0310	2.9636	0.0094	0.1065	0.9838
		Female	2293	9-59	-11.4598	0.0300	3.0457	0.0089	0.1207	0.9809
	Autumn	Combined	4111	5-60	-11.6356	0.0200	3.1091	0.0059	0.1012	0.9857
		Male	1709	5-53	-11.4725	0.0336	3.0584	0.0100	0.1048	0.9819
		Female	2356	9-60	-11.7022	0.0265	3.1297	0.0077	0.0969	0.9861
Atlantic halibut Hippoglossus hippoglossus	Spring	Combined	19	31-154	-12.5865	0.1981	3.2674	0.0495	0.0763	0.9961
-1 0 11 0	Autumn	Combined	29	8-97	-12.1813	0.1710	3.1904	0.0432	0.1031	0.9951

^a Disk width is measured for rays and stingrays.

Table 2. Comparison of length ranges and minimum and maximum lengths (cm) used in this study to those observed on
NEFSC bottom trawl surveys during 1963-99, including differences in the minimum and maximum lengths relative
to the 1963-99 values, and the ratios of this study's ranges divided by the 1963-99 surveys' ranges.

	196 Le	3-99 Surv ngths (cm	vey 1)	T Le	his Study' engths (cn	's 1)	Differ	ence	Dango
Species	Min.	Max.	Range	Min.	Max.	Range	Min.	Max.	Ratio
Sand tiger	98	261	163	150	260	110	52	1	0.67
Chain dogfish	7	50	43	10	45	35	3	5	0.81
Atlantic sharpnose shark	41	175	134	50	100	50	9	75	0.37
Smooth dogfish	29	150	121	40	150	110	11	0	0.91
Sandbar shark	61	186	125	63	174	111	2	12	0.89
Spiny dogfish	5	117	112	13	114	101	8	3	0.90
Atlantic angel shark	16	123	107	32	120	88	16	3	0.82
Atlantic torpedo	35	140	105	71	102	31	36	38	0.30
Clearnose skate	7	93	86	22	71	49	15	22	0.57
Little skate	5	66	61	6	63	57	1	3	0.93
Barndoor skate	19	132	113	23	121	98	4	11	0.87
Winter skate	10	135	125	13	111	98	3	24	0.78
Rosette skate	4	47	43	14	43	29	10	4	0.67
Smooth skate	9	73	64	15	65	50	6	8	0.78
Thorny skate	8	109	101	10	105	95	2	4	0.94
Southern stingray	21	108	87	45	100	55	24	8	0.63
Roughtail stingray	10	190	180	36	155	119	26	35	0.66
Bluntnose stingray	18	135	117	18	104	86	0	31	0.74
Spiny butterfly ray	20	217	197	38	210	172	18	7	0.87
Smooth butterfly ray	22	176	154	40	84	44	18	92	0.29
Bullnose ray	21	143	122	28	129	101	7	14	0.83
Cownose ray	34	103	69	34	103	69	0	0	1.00
Atlantic sturgeon	56	226	170	84	159	75	28	67	0.44
American shad	4	62	58	8	53	45	4	9	0.78
Blueback herring	5	42	37	7	29	22	2	13	0.59
Alewife	3	46	43	10	27	17	7	19	0.40
Atlantic herring	3	46	43	4	37	33	1	9	0.77
Round herring	4	21	17	11	20	9	7	1	0.53
Atlantic thread herring	1	26	25	5	18	13	4	8	0.52
Spanish sardine	3	27	24	8	18	10	5	9	0.42
Goosefish	3	121	118	5	101	96	2	20	0.81
Atlantic cod	2	141	139	4	120	116	2	21	0.83
Pollock	3	160	157	13	112	99	10	48	0.63
Red hake	1	70	69	2	68	66	1	2	0.96
Spotted hake	2	46	44	3	43	40	1	3	0.91
White hake	2	136	134	4	126	122	2	10	0.91
Cusk	6	105	99	6	95	89	0	10	0.90
Haddock	3	93	90	4	88	84	1	5	0.93

	196 Le	3-99 Surv ngths (cm	/ey I)	T Le	his Study' engths (cn	's n)	Differ	ence	Danas
Species	Min.	Max.	Range	Min.	Max.	Range	Min.	Max.	Range Ratio
Silver hake	1	78	77	3	63	60	2	15	0.78
Offshore hake	5	60	55	8	51	43	3	9	0.78
Fawn cusk-eel	4	44	40	13	28	15	9	16	0.38
Ocean pout	4	103	99	7	98	91	3	5	0.92
Buckler dory	6	55	49	9	53	44	3	2	0.90
Acadian redfish	3	52	49	3	47	44	0	5	0.90
Blackbelly rosefish	2	47	45	4	35	31	2	12	0.69
Northern searobin	1	45	44	21	34	13	20	11	0.30
Sea raven	3	69	66	7	68	61	4	1	0.92
Longhorn sculpin	3	60	57	4	37	33	1	23	0.58
Striped bass	6	121	115	23	102	79	17	19	0.69
Black sea bass	3	58	55	3	54	51	0	4	0.93
Bluefish	2	88	86	3	80	77	1	8	0.90
Greater amberjack	9	114	105	30	80	50	21	34	0.48
Scup	1	44	43	4	38	34	3	6	0.79
Vermilion snapper	2	52	50	8	21	13	6	31	0.26
Weakfish	2	84	82	3	70	67	1	14	0.82
Spot	3	29	26	9	26	17	6	3	0.65
Southern kingfish	4	40	36	17	39	22	13	1	0.61
Northern kingfish	4	38	34	24	29	5	20	9	0.15
Atlantic croaker	1	49	48	6	44	38	5	5	0.79
Atlantic spadefish	3	51	48	22	43	21	19	8	0.44
Tautog	11	69	58	18	39	21	7	30	0.36
Cunner	3	49	46	8	36	28	5	13	0.61
Atlantic wolffish	3	122	119	24	107	83	21	15	0.70
Atlantic mackerel	4	51	47	12	45	33	8	6	0.70
Spanish mackerel	3	89	86	18	59	41	15	30	0.48
Butterfish	1	29	28	1	23	22	0	6	0.79
Summer flounder	11	78	67	12	78	66	1	0	0.99
Fourspot flounder	3	49	46	3	49	46	0	0	1.00
Windowpane	2	48	46	2	44	42	0	4	0.91
Witch flounder	3	69	66	4	64	60	1	5	0.91
American plaice	3	66	63	3	65	62	0	1	0.98
Yellowtail flounder	2	58	56	4	55	51	2	3	0.91
Winter flounder	3	69	66	4	60	56	1	9	0.85
Atlantic halibut	4	154	150	8	154	146	4	0	0.97

Table 3. Minimum and maximum lengths (cm) observed for species collected during 1963-99 NEFSC bottom trawl surveys, by gender ("Unsexed" = gender not specified; "Combined" = unsexed, males, and females). (Species are ordered by NODC taxonomic code; "uncl" = not classified to species level.)

Species				Length (cn	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Iceland scallop	Chlamys islandica	Combined	16	1	6
Sea scallop	Placopecten magellanicus	Combined	12158	1	20
Atlantic calico scallop	Argopecten gibbus	Combined	6	2	4
Atlantic surfclam	Spisula solidissima	Combined	28	3	17
Ocean quahog	Arctica islandica	Combined	22	6.9	11
Bobtail squid uncl	Sepiolidae	Combined	306	1	6
Lesser bobtail squid	Semirossia tenera	Combined	7	1	3
Warty bobtail squid	Rossia palpebrosa	Combined	1	3	3
Butterfly bobtail squid	Stoloteuthis leucoptera	Combined	11	2	4
Longfin inshore squid	Loligo pealeii	Combined	79723	1	49
Slender inshore squid	Loligo pleii	Combined	54	3	21
Atlantic brief squid	Lolliguncula brevis	Combined	990	1	10
Eye-flash squid	Abralia veranyi	Combined	24	2	4
Northern shortfin squid	Illex illecebrosus	Combined	54033	1	37
Octopus uncl	Octopoda	Combined	840	1	16
Common octopus	Octopus vulgaris	Combined	11	2	9
Spoonarm octopus	Bathypolypus arcticus	Combined	160	1	17
Horseshoe crah	I imulus polyphemus	Unsexed	5109	10	36
		Male	1029	12	38
		Female	1764	11	39
Northern shrimp	Pandalus horealis	Unsexed	61576	0.7	3.2
r tor alern bin mip		Male	34832	0.6	2.85
		Female	11304	1.75	2.9
American lobster	Homarus americanus	Unsexed	1392	3	24
		Male	71070	2	20.6
		Female	72222	2	24.3
Caribbean spiny lobster	Panulirus argus	Combined	11	13	16
Ridged slipper lobster	Scyllarides nodifer	Combined	44	1	15
Northern stone crab	Lithodes maia	Unsexed	304	1	23
	Limotes maju	Male	38	1	14
		Female	155	1	14
Galatheid uncl	Galatheidae	Unsexed	33	1	14
Guidaneia unei	Guiumerdue	Male	1	3	3
		Female	5	2	7
Calico box crab	Henatus enheliticus	Unsexed	1	5	5
		Male	2	4	7
		Female	2	3	5
Gladiator box crab	Acanthocarpus alexandri	Unsexed	12	3	12
		Male	21	1	6
		Female	5	2	4

	Species			Length (cn	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Snider crab uncl	Majidae	Unsexed	164	1	13
spider erab uner	Wajiuae	Male	146	1	11
		Female	101	2	12
Snow crah	Chionoecetes opilio	Unsexed	24	2	13
	emonocecies opino	Male	11	4	12
		Female	13	2	8
Jonah crab	Cancer borealis	Unsexed	585	1	17
		Male	7374	1	21
		Female	5319	1	18
Atlantic rock crab	Cancer irroratus	Unsexed	930	1	16
		Male	14157	1	19
		Female	10923	1	19
Speckled swimming crab	Arenaeus cribrarius	Unsexed	1	8	8
1 0		Male	14	3	11
		Female	6	6	9
Blotched swimming crab	Portunus spinimanus	Unsexed	35	1	7
		Male	10	2	11
		Female	14	2	7
Dathyal arringming analy	Pathunastas langianing	Unsexed	35	2	10
Bathyai swinning crab	Bainynecies iongispina	Male	24	3	10
		Female	29	2	9
Blue crah	Callinactor sanidus	Unsexed	1728	2	20
Blue crab	Cultinecles suplaus	Male	246	2	16
		Female	537	2	18
Ladv crab	Ovalines ocellatus	Unsexed	5586	1	16
Eudy oldo	o vanpes occitatas	Male	744	1	11
		Female	639	1	12
Coarsehand lady crab	Ovalipes stephensoni	Unsexed	421	1	11
	o ranges stephensom	Male	110	1	11
		Female	51	2	9
Red deepsea crab	Chaceon quinquedens	Unsexed	537	3	17
1	1 1	Male	204	6	15
		Female	318	2	15
Golden deepsea crab	Geryon fenneri	Female	1	11	11
Sea lamprey	Petromyzon marinus	Combined	131	13	80
Atlantic hagfish	Myxine glutinosa	Combined	649	14	66
Sand tiger	Carcharias taurus	Combined	48	98	261
Basking shark	Cetorhinus maximus	Combined	2	432	440
Thresher shark	Alopias vulpinus	Combined	4	137	176
Chain dogfish	Scyliorhinus retifer	Combined	1845	7	50
Atlantic sharpnose shark	Rhizoprionodon terraenovae	Combined	591	41	175
Smooth dogfish	Mustelus canis	Unsexed	12213	29	130
č		Male	10014	40	115
		Female	8616	32	150

	Species			Length (cr	Range n)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Dusky shark	Carcharhinus obscurus	Combined	96	49	211
Sandbar shark	Carcharhinus plumbeus	Combined	184	61	186
Blacknose shark	Carcharhinus acronotus	Combined	2	98	102
Blacktip shark	Carcharhinus limbatus	Combined	1	138	138
Night shark	Carcharhinus signatus	Combined	2	65	67
Scalloped hammerhead shark	Sphyrna lewini	Combined	11	59	186
Spiny dogfish	Saughus acanthias	Unsexed	6096	20	112
Spiny dognan	Squatus acaninias	Male	181881	14	104
		Female	219579	5	117
Rough sagre	Etmopterus princeps	Combined	10	13	28
Broadband dogfish	Etmopterus gracilispinis	Combined	13	11	22
Black dogfish	Centroscyllium fabricii	Combined	46	6	31
Atlantic angel shark	Squatina dumeril	Combined	1524	16	123
Atlantic torpedo	Torpedo nobiliana	Combined	53	35	140
Lesser electric ray	Narcine brasiliensis	Combined	7	23	37
Clearnose skate	Raja eglanteria	Combined	6017	7	93
Little skate	Leucoraja erinacea	Combined	73656	5	66
Barndoor skate	Dipturus laevis	Combined	1056	19	132
Winter skate	Leucoraja ocellata	Combined	43855	10	135
Rosette skate	Leucoraja garmani	Combined	4833	4	47
Smooth skate	Malacoraja senta	Combined	6099	9	73
Thorny skate	Amblyraja radiata	Combined	20610	8	109
Southern stingray ^a	Dasyatis americana	Combined	180	21	108
Roughtail stingray ^a	Dasyatis centroura	Combined	385	10	190
Atlantic stingray ^a	Dasyatis sabina	Combined	27	22	90
Bluntnose stingray ^a	Dasyatis say	Combined	2955	18	135
Spiny butterfly ray ^a	Gymnura altavela	Combined	1138	20	217
Smooth butterfly ray ^a	Gymnura micrura	Combined	104	22	176
Bullnose ray ^a	Myliobatis freminvillei	Combined	1488	21	143
Cownose ray ^a	Rhinoptera bonasus	Combined	774	34	103
Manta ^a	Manta birostris	Combined	6	120	150
Atlantic sturgeon	Acipenser oxyrhynchus	Combined	60	56	226
Ladyfish	Elops saurus	Combined	1	29	29
American eel	Anguilla rostrata	Combined	32	2	78
Spotted moray	Gymnothorax moringa	Combined	7	36	78
Blackedge moray	Gymnothorax nigromarginatus	Combined	1	49	49
Honeycomb moray	Gymnothorax saxicola	Combined	26	36	51
Conger eel	Conger oceanicus	Combined	608	6	135
Bandtooth conger	Ariosoma balearicum	Combined	5	22	69
Snake eel uncl	Ophichthidae	Combined	112	13	84
Shrimp eel	Ophichthus gomesi	Combined	1	39	39
Margined snake eel	Ophichthus cruentifer	Combined	124	13	74
Palespotted eel	Ophichthus puncticeps	Combined	98	9	70
Spotted spoon-nose eel	Echiophis intertinctus	Combined	4	48	86
Snubnose eel	Simenchelys parasiticus	Combined	2	6	10

	Species			Length I (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Slender snipe eel	Nemichthys scolopaceus	Combined	231	20	99
American shad	Alosa sapidissima	Combined	3145	4	62
Blueback herring	Alosa aestivalis	Combined	6006	5	42
Hickory shad	Alosa mediocris	Combined	23	7	36
Alewife	Alosa pseudoharengus	Combined	16688	3	46
Atlantic herring	Clupea harengus	Combined	86946	3	46
Atlantic menhaden	Brevoortia tyrannus	Combined	951	5	42
Gizzard shad	Dorosoma cepedianum	Combined	1	12	12
Round herring	Etrumeus teres	Combined	2268	4	21
Atlantic thread herring	Opisthonema oglinum	Combined	1247	1	26
Spanish sardine	Sardinella aurita	Combined	1295	3	27
Anchovy uncl	Engraulidae	Combined	18	2	17
Silver anchovy	Engraulis eurystole	Combined	161	4	18
Striped anchovy	Anchoa hepsetus	Combined	4300	2	21
Bay anchovy	Anchoa mitchilli	Combined	4751	1	20
Dusky anchovy	Anchoa lyolepis	Combined	47	3	11
Longnose anchovy	Anchoa nasuta	Combined	25	4	9
Flat anchovy	Anchoviella perfasciata	Combined	10	4	7
Capelin	Mallotus villosus	Combined	90	5	21
Rainbow smelt	Osmerus mordax	Combined	333	4	26
Atlantic argentine	Argentina silus	Combined	932	4	49
Striated argentine	Argentina striata	Combined	123	3	30
Lightfish uncl	Gonostomatidae	Combined	24	3	26
	Gonostoma atlanticum	Combined	3	11	15
Longtooth anglemouth	Gonostoma elongatum	Combined	7	15	21
Weitzmans pearlsides	Maurolicus weitzmani	Combined	650	2	11
	Polymetme thaeocoryla	Combined	9	7	18
Hatchetfish uncl	Sternoptychidae	Combined	82	1	11
Silver hatchetfish	Argyropelecus aculeatus	Combined	24	1	7
	Polyipnus clarus	Combined	124	1	8
Viperfish	Chauliodus sloani	Combined	85	7	35
Boa dragonfish	Stomias boa	Combined	93	5	40
Slickhead uncl	Alepocephaliidae	Combined	7	6	14
Bluntnose smoothhead	Xenodermichthys copei	Combined	2	13	14
Inshore lizardfish	Synodus foetens	Combined	2848	3	43
Sand diver	Synodus intermedius	Combined	44	6	34
Offshore lizardfish	Synodus poeyi	Combined	530	3	40
Red lizardfish	Synodus synodus	Combined	19	4	14
Largescale lizardfish	Saurida brasiliensis	Combined	21	4	10
Shortjaw lizardfish	Saurida normani	Combined	36	3	29
Snakefish	Trachinocephalus myops	Combined	991	4	33
Shortnose greeneye	Chlorophthalmus agassizi	Combined	799	3	14
Longnose greeneye	Parasudis truculenta	Combined	116	5	24
White barracudina	Arctozenus rissoi	Combined	53	7	27
	Paralepis coregonoides	Combined	3	20	31

	Species			Length (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Longnose lancetfish	Alepisaurus ferox	Combined	1	10	10
Horned lanternfish	Ceratoscopelus maderensis	Combined	6	5	7
Lanternfish uncl	Myctophidae	Combined	1765	2	26
Headlightfish	Diaphus dumerili	Combined	2	8	8
Hardhead catfish	Arius felis	Combined	9	2	23
Atlantic midshipman	Porichthys plectrodon	Combined	594	2	23
Oyster toadfish	Opsanus tau	Combined	2	25	31
Leopard toadfish	Opsanus pardus	Combined	5	4	31
Goosefish	Lophius americanus	Combined	28458	3	121
Blackfin goosefish	Lophius gastrophysus	Combined	4	12	13
Singlespot frogfish	Antennarius radiosus	Combined	4	3	18
Redeye gaper	Chaunax stigmaeus	Combined	13	3	37
Shortnose batfish	Ogcocephalus nasutus	Combined	32	2	16
Roughback batfish	Ogcocephalus parvus	Combined	35	1	22
Longnose batfish	Ogcocephalus corniger	Combined	24	3	19
Atlantic batfish	Dibranchus atlanticus	Combined	17	8	16
Pancake batfish	Halieutichthys aculeatus	Combined	61	3	17
Blue hake	Antimora rostrata	Combined	7	11	22
	Laemonema barbatulum	Combined	13	15	22
Metallic codling	Physiculus fulvus	Combined	15	4	24
Atlantic cod	Gadus morhua	Combined	72801	2	141
Atlantic tomcod	Microgadus tomcod	Combined	1	18	18
Pollock	Pollachius virens	Combined	18780	3	160
Red hake	Urophycis chuss	Combined	135909	1	70
Spotted hake	Urophycis regia	Combined	64311	2	46
White hake	Urophycis tenuis	Combined	69627	2	136
Longfin hake	Urophycis chesteri	Combined	661	3	42
Carolina hake	Urophycis earlli	Combined	32	8	52
Southern hake	Urophycis floridana	Combined	3	22	28
Cusk	Brosme brosme	Combined	2985	6	105
Beardless codling	Gadella imberbis	Combined	9	8	19
Haddock	Melanogrammus aeglefinus	Combined	64173	3	93
Fourbeard rockling	Enchelyopus cimbrius	Combined	2347	5	40
Silver hake	Merluccius bilinearis	Combined	251613	1	78
Offshore hake	Merluccius albidus	Combined	2686	5	60
Cusk-eel uncl	Ophidiidae	Combined	83	3	39
Mottled cusk-eel	Lepophidium jeannae	Combined	14	6	30
Fawn cusk-eel	Lepophidium profundorum	Combined	14427	4	44
Blotched cusk-eel	Ophidion grayi	Combined	49	6	25
Bank cusk-eel	Ophidion holbrooki	Combined	382	5	31
Mooneye cusk-eel	Ophidion selenops	Combined	1	13	13
Crested cusk-eel	Ophidion welshi	Combined	6	9	17
Striped cusk-eel	Ophidion marginatum	Combined	784	4	30
Polka-dot cusk-eel	Otophidium omostigmum	Combined	70	4	23
Pearlfish	Carapus bermudensis	Combined	28	6	15

	Species			Length (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Eelpout uncl	Zoarcidae	Combined	7	12	62
Wolf eelpout	Lycenchelys verrilli	Combined	55	5	21
Atlantic soft pout	Melanostigma atlanticum	Combined	565	4	19
Ocean pout	Macrozoarces americanus	Combined	23532	4	103
Grenadier uncl	Macrouridae	Combined	350	5	37
Longnose grenadier	Coelorhynchus carminatus	Combined	16	5	25
Marlin-spike	Nezumia bairdi	Combined	162	5	31
Western softhead grenadier	Malacocephalus occidentalis	Combined	12	5	27
Roughhead grenadier	Macrourus berglax	Combined	10	18	26
Margined flyingfish	Cypselurus cyanopterus	Combined	4	30	40
Silverstripe halfbeak	Hyporhamphus unifasciatus	Combined	2	20	30
Flying halfbeak	Euleptorhamphus velox	Combined	2	25	30
Flat needlefish	Ablennes hians	Combined	2	23	53
Houndfish	Tylosurus crocodilus	Combined	1	20	20
Atlantic saury	Scomberesox saurus	Combined	138	15	37
Silverside uncl	Atherinidae	Combined	42	6	18
Rough silverside	Membras martinica	Combined	3	6	8
Atlantic silverside	Menidia menidia	Combined	2006	3	17
Beardfish	Polymixia lowei	Combined	290	6	28
Big roughy	Gephyroberyx darwini	Combined	7	29	48
Blackmouthed alfonsin	Hoplostethus mediterraneus	Combined	66	3	20
Squirrelfish	Holocentrus adscensionis	Combined	60	7	37
Longspine squirrelfish	Holocentrus rufus	Combined	2	24	27
Blackbar soldierfish	Myripristis jacobus	Combined	18	7	15
Bigeye soldierfish	Ostichthys trachypoma	Combined	3	4	11
Spinycheek soldierfish	Corniger spinosus	Combined	2	13	15
Red dory	Cyttopsis rosea	Combined	11	8	13
Buckler dory	Zenopsis conchifera	Combined	751	6	55
Spotted tinselfish	Xenolepidichthys dalgleishi	Combined	10	7	11
Deepbody boarfish	Antigonia capros	Combined	306	3	20
Shortspine boarfish	Antigonia combatia	Combined	1	11	11
Unicornfish	Eumecichthys fiski	Combined	1	43	43
Threespine stickleback	Gasterosteus aculeatus	Combined	145	2	8
Fourspine stickleback	Apeltes quadracus	Combined	2	5	5
Trumpetfish	Aulostomus maculatus	Combined	6	22	28
Bluespotted cornetfish	Fistularia tabacaria	Combined	23	16	62
Red cornetfish	Fistularia petimba	Combined	94	22	143
Longspine snipefish	Macrorhamphosus scolopax	Combined	208	5	25
Pipefish seahorse uncl	Syngnathidae	Combined	118	4	30
Northern pipefish	Syngnathus fuscus	Combined	775	2	30
Chain pipefish	Syngnathus louisianae	Combined	3	23	30
Bull pipefish	Syngnathus springeri	Combined	1	9	9
Lined seahorse	Hippocampus erectus	Combined	63	3	16
Longsnout seahorse	Hippocampus reidi	Combined	1	7	7
Acadian redfish	Sebastes fasciatus	Combined	49983	3	52

	Species			Length] (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Blackbelly rosefish	Helicolenus dactylopterus	Combined	3270	2	47
Spinycheek scorpionfish	Neomerinthe hemingwayi	Combined	25	3	45
Longspine scorpionfish	Pontinus longispinis	Combined	75	4	25
Longfin scorpionfish	Scorpaena agassizi	Combined	22	6	19
Barbfish	Scorpaena brasiliensis	Combined	119	3	31
Smoothhead scorpionfish	Scorpaena calcarata	Combined	48	5	16
Hunchback scorpionfish	Scorpaena dispar	Combined	6	10	15
Spotted scorpionfish	Scorpaena plumieri	Combined	4	8	29
Northern searobin	Prionotus carolinus	Combined	12665	1	45
Striped searobin	Prionotus evolans	Combined	4582	1	48
Leopard searobin	Prionotus scitulus	Combined	169	2	26
Bighead searobin	Prionotus tribulus	Combined	92	3	31
Spiny searobin	Prionotus alatus	Combined	111	3	22
Bandtail searobin	Prionotus ophryas	Combined	18	10	21
Bluespotted searobin	Prionotus roseus	Combined	14	8	18
Blackwing searobin	Prionotus rubio	Combined	134	3	28
Shortwing searobin	Prionotus stearnsi	Combined	49	2	13
Shortfin searobin	Bellator brachychir	Combined	3	11	13
Streamer searobin	Bellator egretta	Combined	10	4	14
Horned searobin	Bellator militaris	Combined	74	3	14
Slender searobin	Peristedion gracile	Combined	5	8	11
Armored searobin	Peristedion miniatum	Combined	498	5	38
Hookear sculpin uncl	Artediellus sp.	Combined	468	2	15
Sea raven	Hemitripterus americanus	Combined	12384	3	69
Shorthorn sculpin	Myoxocephalus scorpius	Combined	27	6	44
Longhorn sculpin	Myoxocephalus octodecemspinosus	Combined	29842	3	60
Grubby	Myoxocephalus aenaeus	Combined	202	3	19
Moustache sculpin	Triglops murrayi	Combined	1176	2	28
Alligatorfish	Aspidophoroides monopterygius	Combined	778	4	16
Atlantic spiny lumpsucker	Eumicrotremus spinosus	Combined	2	3	3
Atlantic seasnail	Liparis atlanticus	Combined	140	2	8
Inquiline snailfish	Liparis inquilinus	Combined	10	2	7
Lumpfish	Cyclopterus lumpus	Combined	624	3	57
Flying gurnard	Dactylopterus volitans	Combined	13	4	44
White perch	Morone americana	Combined	3	17	17
Striped bass	Morone saxatilis	Combined	3300	6	121
Black sea bass	Centropristis striata	Combined	22146	3	58
Bank sea bass	Centropristis ocyurus	Combined	278	2	28
Rock sea bass	Centropristis philadelphica	Combined	130	3	22
Rock hind	Epinephelus adscensionis	Combined	1	43	43
Yellowedge grouper	Epinephelus flavolimbatus	Combined	1	25	25
Red hind	Epinephelus guttatus	Combined	8	43	51
Red grouper	Epinephelus morio	Combined	2	64	85
Warsaw grouper	Epinephelus nigritus	Combined	6	84	123
Snowy grouper	Epinephelus niveatus	Combined	32	29	108

Species				Length] (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Gag	Mycteroperca microlepis	Combined	45	16	90
Black grouper	Mycteroperca bonaci	Combined	3	14	14
Yellowmouth grouper	Mycteroperca interstitialis	Combined	8	14	76
Scamp	Mycteroperca phenax	Combined	8	17	92
Yellowfin bass	Anthias nicholsi	Combined	84	4	28
Sand perch	Diplectrum formosum	Combined	217	2	24
Dwarf sand perch	Diplectrum bivittatum	Combined	1	1	1
Red barbier	Hemanthias vivanus	Combined	33	4	16
Streamer bass	Hemanthias aureorubens	Combined	25	7	28
Creole-fish	Paranthias furcifer	Combined	1	29	29
School bass	Schultzea beta	Combined	18	6	8
Blackear bass	Serranus atrobranchus	Combined	10	3	13
Tattler	Serranus phoebe	Combined	312	3	27
Roughtongue bass	Holanthias martinicensis	Combined	1	5	5
Spotted soapfish	Rypticus subbifrenatus	Combined	1	11	11
Bigeye	Priacanthus arenatus	Combined	299	3	40
Glasseye snapper	Priacanthus cruentatus	Combined	10	3	50
Short bigeye	Pristigenys alta	Combined	116	2	40
Bulleye	Cookeolus japonicus	Combined	8	5	15
Cardinalfish uncl	Apogonidae	Combined	139	2	16
Flamefish	Apogon maculatus	Combined	1	4	4
Twospot cardinalfish	Apogon pseudomaculatus	Combined	53	2	11
	Epigonus pandionis	Combined	29	5	12
Sherborn's cardinalfish	Howella sherborni	Combined	2	7	7
Blackmouth bass	Synagrops bellus	Combined	200	2	19
Keelcheek bass	Synagrops spinosus	Combined	6	5	11
Blueline tilefish	Caulolatilus microps	Combined	4	42	76
Goldface tilefish	Caulolatilus chrysops	Combined	2	11	13
Tilefish	Lopholatilus chamaeleonticeps	Combined	63	8	68
Bluefish	Pomatomus saltatrix	Combined	26715	2	88
Cobia	Rachycentron canadum	Combined	504	14	145
Remora	Remora remora	Combined	29	7	54
Sharksucker	Echeneis naucrates	Combined	10	11	68
Rough scad	Trachurus lathami	Combined	1071	2	21
African pompano	Alectis ciliaris	Combined	51	4	33
Yellow jack	Caranx bartholomaei	Combined	77	2	23
Crevalle jack	Caranx hippos	Combined	300	3	28
Horse-eye jack	Caranx latus	Combined	1	17	17
Blue runner	Caranx crysos	Combined	1117	2	34
Bar jack	Caranx ruber	Combined	3	7	17
Atlantic bumper	Chloroscombrus chrysurus	Combined	201	2	24
Leatherjack	Oligoplites saurus	Combined	1	22	22
Bigeye scad	Selar crumenophthalmus	Combined	286	2	25
Lookdown	Selene vomer	Combined	239	1	23
Atlantic moonfish	Selene setapinnis	Combined	613	1	25

	Species			Length l (cm	Range
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Greater amberjack	Seriola dumerili	Combined	384	9	114
Lesser amberjack	Seriola fasciata	Combined	13	17	32
Almaco jack	Seriola rivoliana	Combined	17	26	125
Banded rudderfish	Seriola zonata	Combined	235	3	29
Florida pompano	Trachinotus carolinus	Combined	45	15	34
Permit	Trachinotus falcatus	Combined	6	15	20
Mackerel scad	Decapterus macarellus	Combined	724	2	31
Round scad	Decapterus punctatus	Combined	2843	2	21
Pilotfish	Naucrates ductor	Combined	1	5	5
Cottonmouth jack	Uraspis secunda	Combined	8	24	33
Dolphin	Coryphaena hippurus	Combined	2	20	42
Snapper uncl	Lutjanidae	Combined	18	3	133
Mutton snapper	Lutjanus analis	Combined	2	3	3
Red snapper	Lutjanus campechanus	Combined	54	3	76
Lane snapper	Lutjanus synagris	Combined	20	2	14
Silk snapper	Lutjanus vivanus	Combined	13	17	56
Vermilion snapper	Rhomboplites aurorubens	Combined	424	2	52
Wenchman	Pristipomoides aquilonaris	Combined	24	5	23
Spotfin mojarra	Eucinostomus argenteus	Combined	121	3	18
Silver jenny	Eucinostomus gula	Combined	62	6	19
Tomtate	Haemulon aurolineatum	Combined	849	2	29
White grunt	Haemulon plumieri	Combined	150	8	53
Striped grunt	Haemulon striatum	Combined	76	4	19
Pigfish	Orthopristis chrysoptera	Combined	1046	2	40
Scup	Stenotomus chrysops	Combined	14564	1	44
Pinfish	Lagodon rhomboides	Combined	603	1	24
Sheepshead	Archosargus probatocephalus	Combined	58	3	60
Spottail pinfish	Diplodus holbrooki	Combined	488	5	27
Saucereye porgy	Calamus calamus	Combined	12	12	40
Whitebone porgy	Calamus leucosteus	Combined	669	6	42
Knobbed porgy	Calamus nodosus	Combined	129	8	47
Littlehead porgy	Calamus proridens	Combined	6	30	32
Sheepshead porgy	Calamus penna	Combined	2	35	37
Red porgy	Pagrus sedecim	Combined	232	3	47
Spotted seatrout	Cynoscion nebulosus	Combined	8	21	56
Silver seatrout	Cynoscion nothus	Combined	3	23	24
Weakfish	Cynoscion regalis	Combined	32736	2	84
Silver perch	Bairdiella chrysoura	Combined	627	2	23
Spot	Leiostomus xanthurus	Combined	6431	3	29
Banded drum	Larimus fasciatus	Combined	645	2	23
Southern kingfish	Menticirrhus americanus	Combined	4050	4	40
Gulf kingfish	Menticirrhus littoralis	Combined	2	24	25
Northern kingfish	Menticirrhus saxatilis	Combined	1196	4	38
Atlantic croaker	Micropogonias undulatus	Combined	6220	1	49
Black drum	Pogonias cromis	Combined	56	16	105

Species				Length] (cm	Range 1)
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Red drum	Sciaenops ocellatus	Combined	34	9	114
Star drum	Stellifer lanceolatus	Combined	2	13	14
Jackknife-fish	Equetus lanceolatus	Combined	26	17	32
Cubbyu	Equetus umbrosus	Combined	244	9	36
Red goatfish	Mullus auratus	Combined	99	6	18
Spotted goatfish	Pseudupeneus maculatus	Combined	17	7	22
Dwarf goatfish	Upeneus parvus	Combined	59	6	15
Atlantic spadefish	Chaetodipterus faber	Combined	454	3	51
Spotfin butterflyfish	Chaetodon ocellatus	Combined	81	4	19
Bank butterflyfish	Chaetodon aya	Combined	21	5	15
Reef butterflyfish	Chaetodon sedentarius	Combined	69	7	14
Queen angelfish	Holacanthus ciliaris	Combined	1	19	19
Blue angelfish	Holacanthus bermudensis	Combined	52	18	45
Damselfish uncl	Pomacentridae	Combined	2	13	13
Yellowtail reeffish	Chromis enchrysurus	Combined	46	3	12
Striped mullet	Mugil cephalus	Combined	19	11	33
White mullet	Mugil curema	Combined	6	10	15
Northern sennet	Sphyraena borealis	Combined	307	4	40
Guaguanche	Sphyraena guachancho	Combined	55	4	40
Tautog	Tautoga onitis	Combined	177	11	69
Cunner	Tautogolabrus adspersus	Combined	5325	3	49
Creole wrasse	<i>Clepticus parrae</i>	Combined	6	6	8
Red hogfish	Decodon puellaris	Combined	2	17	17
Pearly razorfish	Hemipteronotus novacula	Combined	20	4	20
Hogfish	Lachnolaimus maximus	Combined	50	2	75
Parrotfish uncl	Scaridae	Combined	18	5	23
Stargazer uncl	Uranoscopidae	Combined	4	2	2
Northern stargazer	Astroscopus guttatus	Combined	96	3	52
Southern stargazer	Astroscopus y-graecum	Combined	37	3	46
Lancer stargazer	Kathetostoma albigutta	Combined	102	4	35
Crested blenny	Hypleurochilus geminatus	Combined	4	5	9
Seaweed blenny	Parablennius marmoreus	Combined	5	3	6
Atlantic wolffish	Anarhichas lupus	Combined	3126	3	122
Clinid uncl	Clinidae	Combined	1	1	1
Daubed shanny	Lumpenus maculatus	Combined	503	5	28
Snakeblenny	Lumpenus lumpretaeformis	Combined	273	4	54
Wrymouth	Cryptacanthodes maculatus	Combined	377	4	97
Radiated shanny	Ulvaria subbifurcata	Combined	212	4	20
Rock gunnel	Pholis gunnellus	Combined	165	2	20
Northern sand lance	Ammodytes dubius	Combined	6437	3	28
Spotfin dragonet	Foetorepus agassizi	Combined	52	3	32
Goby uncl	Gobiidae	Combined	47	2	20
Naked goby	Gobiosoma bosc	Combined	6	4	4
Ocean surgeon	Acanthurus bahianus	Combined	6	3	13
Black gemfish	Nesiarchus nasutus	Combined	1	32	32

Species					Length Range (cm)	
Common Name	Scientific Name	Gender	Ν	Min.	Max.	
Conejo	Promethichthys prometheus	Combined	63	7	41	
Simonys frostfish	Benthodesmus simonyi	Combined	58	12	61	
Atlantic cutlassfish	Trichiurus lepturus	Combined	741	6	92	
Atlantic bonito	Sarda sarda	Combined	52	23	58	
Striped bonito	Sarda orientalis	Combined	2	55	57	
Chub mackerel	Scomber japonicus	Combined	317	4	37	
Atlantic mackerel	Scomber scombrus	Combined	29799	4	51	
King mackerel	Scomberomorus cavalla	Combined	114	2	117	
Spanish mackerel	Scomberomorus maculatus	Combined	966	3	89	
Swordfish	Xiphias gladius	Combined	4	85	131	
White marlin	Tetrapturus albidus	Combined	3	3	3	
Barrelfish	Hyperoglyphe perciformis	Combined	2	7	35	
Silver rag	Ariomma bondi	Combined	116	3	50	
Brown driftfish	Ariomma melanum	Combined	8	5	19	
Spotted driftfish	Ariomma regulus	Combined	37	1	25	
Bigeye cigarfish	Cubiceps pauciradiatus	Combined	32	6	17	
Butterfish	Peprilus triacanthus	Combined	32991	1	29	
Harvestfish	Peprilus alepidotus	Combined	553	1	28	
Gulf stream flounder	Citharichthys arctifrons	Combined	9502	1	26	
Horned whiff	Citharichthys cornutus	Combined	6	3	15	
Anglefin whiff	Citharichthys gymnorhinus	Combined	2	4	5	
Spotted whiff	Citharichthys macrops	Combined	57	4	24	
Bay whiff	Citharichthys spilopterus	Combined	5	12	18	
Fringed flounder	Etropus crossotus	Combined	35	3	16	
Smallmouth flounder	Etropus microstomus	Combined	2307	2	43	
Gray flounder	Etropus rimosus	Combined	17	5	11	
Summer flounder	Paralichthys dentatus	Combined	54540	11	78	
Gulf flounder	Paralichthys albigutta	Combined	4	26	46	
Southern flounder	Paralichthys lethostigma	Combined	78	2	54	
Fourspot flounder	Paralichthys oblongus	Combined	87984	3	49	
Broad flounder	Paralichthys squamilentus	Combined	7	17	35	
Windowpane	Scophthalmus aquosus	Combined	85545	2	48	
Three-eye flounder	Ancylopsetta dilecta	Combined	1	15	15	
Ocellated flounder	Ancylopsetta quadrocellata	Combined	26	9	37	
Peacock flounder	Bothus lunatus	Combined	2	2	2	
Eyed flounder	Bothus ocellatus	Combined	47	2	25	
Twospot flounder	Bothus robinsi	Combined	29	8	16	
Spotfin flounder	Cyclopsetta fimbriata	Combined	21	12	32	
Shrimp flounder	Gastropsetta frontalis	Combined	4	14	24	
Deepwater flounder	Monolene sessilicauda	Combined	34	3	19	
Channel flounder	Syacium micrurum	Combined	3	11	23	
Dusky flounder	Syacium papillosum	Combined	1176	2	30	
Witch flounder	Glyptocephalus cynoglossus	Combined	29829	3	69	
American plaice	Hippoglossoides platessoides	Combined	90000	3	66	
Winter flounder	Pseudopleuronectes americanus	Combined	89991	3	69	

Species				Length Range (cm)	
Common Name	Scientific Name	Gender	Ν	Min.	Max.
Yellowtail flounder	Limanda ferruginea	Combined	65187	2	58
Greenland halibut	Reinhardtius hippoglossoides	Combined	42	15	52
Atlantic halibut	Hippoglossus hippoglossus	Combined	912	4	154
Hogchoker	Trinectes maculatus	Combined	442	9	20
Naked sole	Gymnachirus melas	Combined	14	10	18
Tonguefish uncl	Symphurus sp.	Combined	153	1	18
Blackcheek tonguefish	Symphurus plagiusa	Combined	1740	2	21
Spottedfin tonguefish	Symphurus diomedianus	Combined	6	4	18
Northern tonguefish	Symphurus pusillus	Combined	2	7	14
Spottail tonguefish	Symphurus urospilus	Combined	7	6	17
Jambeau	Parahollardia lineata	Combined	2	7	7
Orange filefish	Aluterus schoepfi	Combined	89	2	58
Dotterel filefish	Aluterus heudeloti	Combined	49	12	50
Unicorn filefish	Aluterus monoceros	Combined	26	10	53
Scrawled filefish	Aluterus scriptus	Combined	9	13	27
Gray triggerfish	Balistes capriscus	Combined	436	2	52
Queen triggerfish	Balistes vetula	Combined	10	10	46
Ocean triggerfish	Canthidermis sufflamen	Combined	2	26	31
Fringed filefish	Monacanthus ciliatus	Combined	2	7	12
Planehead filefish	Monacanthus hispidus	Combined	2240	1	31
Scrawled cowfish	Lactophrys quadricornis	Combined	27	16	41
Honeycomb cowfish	Lactophrys polygonia	Combined	12	21	43
Smooth puffer	Lagocephalus laevigatus	Combined	68	1	34
Northern puffer	Sphoeroides maculatus	Combined	1494	1	40
Marbled puffer	Sphoeroides dorsalis	Combined	74	2	16
Southern puffer	Sphoeroides nephelus	Combined	10	8	17
Blunthead puffer	Sphoeroides pachygaster	Combined	7	9	20
Bandtail puffer	Sphoeroides spengleri	Combined	19	1	17
Sharpnose puffer	Canthigaster rostrata	Combined	4	5	7
Striped burrfish	Chilomycterus schoepfi	Combined	68	4	28
Spotted burrfish	Chilomycterus atinga	Combined	1	21	21
Balloonfish	Diodon holocanthus	Combined	24	8	26
Ocean sunfish	Mola mola	Combined	6	107	155
Loggerhead seaturtle	Caretta caretta	Combined	90	40	107

^aDisk width measurement.

Manuscript Qualification

This series represents a secondary level of scientific publishing in the National Marine Fisheries Service (NMFS). For all issues, the series employs thorough internal scientific review, but not necessarily external scientific review. For most issues, the series employs rigorous technical and copy editing. Manuscripts that may warrant a primary level of scientific publishing should be initially submitted to one of NMFS's primary series (*i.e.*, *Fishery Bulletin, NOAA Technical Report NMFS*, or *Marine Fisheries Review*).

Identical, or fundamentally identical, manuscripts should not be concurrently submitted to this and any other publication series. Manuscripts which have been rejected by any primary series strictly because of geographic or temporal limitations may be submitted to this series.

Manuscripts by Northeast Fisheries Science Center (NEFSC) authors will be published in this series upon approval by the NEFSC's Deputy Science & Research Director. Manuscripts by non-NEFSC authors may be published in this series if: 1) the manuscript serves the NEFSC's mission; 2) the manuscript meets the Deputy Science & Research Director's approval; and 3) the author arranges for the printing and binding funds to be transferred to the NEFSC's Research Communications Unit account from another federal account. For all manuscripts submitted by non-NEFSC authors and published in this series, the NEFSC will disavow all responsibility for the manuscripts' contents; authors must accept such responsibility.

The ethics of scientific research and scientific publishing are a serious matter. All manuscripts submitted to this series are expected to adhere -- at a minimum -- to the ethical guidelines contained in Chapter 1 ("Ethical Conduct in Authorship and Publication") of the *CBE Style Manual*, fifth edition (Chicago, IL: Council of Biology Editors). Copies of the manual are available at virtually all scientific libraries.

Manuscript Preparation

Organization: Manuscripts must have an abstract, table of contents, and -- if applicable -- lists of tables, figures, and acronyms. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area," "Methods & Materials," "Results," "Discussion" and/or "Conclusions," "Acknowledgments," and "References Cited."

Style: All NEFSC publication and report series are obligated to conform to the style contained in the most recent edition of the *United States Government Printing Office Style Manual*. That style manual is silent on many aspects of scientific manuscripts. NEFSC publication and report series rely more on the *CBE Style Manual*, fifth edition.

For in-text citations, use the name-date system. A special effort should be made to ensure that the list of cited works contains all necessary bibliographic information. For abbreviating serial titles in such lists, use the most recent edition of the *BIOSIS Serial Sources* (Philadelphia, PA: Biosciences Information Service). Personal communications must include date of contact and full name and mailing address of source.

For spelling of scientific and common names of fishes, mollusks, and decapod crustaceans from the United States and Canada, use *Special Publications* No. 20 (fishes), 26 (mollusks), and 17 (decapod crustaceans) of the American Fisheries Society (Bethesda, MD). For spelling of scientific and common names of marine mammals, use *Special Publication* No. 4 of the Society for Marine Mammalogy (Lawrence, KS). For spelling in general, use the most recent edition of *Webster's Third New International Dictionary of the English Language Unabridged* (Springfield, MA: G.&C. Merriam).

Typing text, tables, and figure captions: Text, tables, and figure captions must be converted to the NOAA-wide standard of WordPerfect. In general, keep text simple (*e.g.*, don't switch fonts and type sizes, don't use hard returns within paragraphs, don't indent except to begin paragraphs). Also, don't use the WordPerfect automatic footnoting function; all notes should be indicated in the text by simple numerical superscripts, and listed together in an "Endnotes" section prior to the "References Cited" section. Especially, don't use the WordPerfect graphics function for embedding tables and figures in text.

Tables may be prepared either with WordPerfect text or with the WordPerfect table formatting function. If text is used, then data should be assigned to columns by using all tabs or all spaces, but not a combination of the two.

Each figure should be supplied both on paper and on disk, unless there is no digital file of a given figure. Except under extraordinary circumstances, color will not be used in illustrations.

Manuscript Submission

Authors must submit one paper copy of the double-spaced manuscript, one disk copy, and original figures (if applicable). NEFSC authors must include a completely signed-off "NEFSC Manuscript/Abstract/Webpage Review Form." Non-NEFSC authors who are not federal employees will be required to sign a "Release of Copyright" form.

Send all materials and address all correspondence to:

Jon A. Gibson (Biological Sciences Editor) NMFS Northeast Fisheries Science Center 166 Water Street Woods Hole, MA 02543-1026 USA.

NORTHEAST FISHERIES SCIENCE CENTER

Dr. John G. Boreman, Acting Science & Research Director Capt. John T. Moakley, Operations, Management & Information Services Chief Teri L. Frady, Research Communications Chief Jon A. Gibson, Biological Sciences Editor & Laura S. Garner, Editor Research Communications Unit Northeast Fisheries Science Center National Marine Fisheries Service, NOAA 166 Water St. Woods Hole, MA 02543-1026

MEDIA MAIL

Publications and Reports of the Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "planning, developing, and managing multidisciplinary programs of basic and applied research to: 1) better understand the living marine resources (including marine mammals) of the Northwest Atlantic, and the environmental quality essential for their existence and continued productivity; and 2) describe and provide to management, industry, and the public, options for the utilization and conservation of living marine resources and maintenance of environmental quality which are consistent with national and regional goals and needs, and with international commitments." Results of NEFSC research are largely reported in primary scientific media (*e.g.*, anonymously-peerreviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Those media are in four categories:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of longterm or large-area studies; synthesis reports for major resources or habitats; analytical reports of environmental conditions or phenomena; annual reports of assessment or monitoring programs; manuals describing unprecedented field and lab techniques; literature surveys of major resource or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/ or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab observations or experiments; progress reports on continuing experiments, monitoring, and assessments; manuals describing routine surveying and sampling programs; background papers for, and summary reports of, scientific meetings; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Resource Survey Report (formerly Fishermen's Report) -- This information report is a quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

The Shark Tagger -- This newsletter is an annual summary of tagging and recapture data on large pelagic sharks as derived from the NMFS's Cooperative Shark Tagging Program; it also presents information on the biology (movement, growth, reproduction, etc.) of these sharks as subsequently derived from the tagging and recapture data. There is internal scientific review, but no technical or copy editing, of this newsletter.

OBTAINING A COPY: To obtain a copy of a *NOAA Technical Memorandum NMFS-NE* or a *Northeast Fisheries Science Center Reference Document*, or to subscribe to the *Resource Survey Report* or the *The Shark Tagger*, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (*http://www.nefsc.noaa.gov/nefsc/publications/*).

ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.